2 resultados para Aptamer

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rupture forces of ligand-receptor interactions, such as proteins-proteins, proteins-cells, and cells-tissues, have been successfully measured by atomic force spectroscopy (AFS). For these measurements, the ligands and receptors were chemically modified so that they can be immobilized on the tip and on a substrate, respectively. The ligand interact the receptor when the tip approaches the substrate. This interaction can be studied by measuring rupture force upon retraction. However, this technique is not feasible for measurements involving small molecules, since they form only few H-bonds with their corresponding receptors. Modifying small molecules for immobilization on surfaces may block or change binding sites. Thus, recorded rupture forces might not reflect the full scope of the involved small ligand-receptor interactions.rnIn my thesis, a novel concept that allows measuring the rupture force of small involved ligand-receptor interactions and does not require molecular modification for immobilization was introduced. The rupture force of small ligand-receptor interaction is not directly measured but it can be determined from measurements in the presence and in the absence of the ligand. As a model system, the adenosine mono phosphate (AMP) and the aptamer that binds AMP were selected. The aptamer (receptor) is a single stranded DNA that can partially self-hybridize and form binding pockets for AMP molecules (ligands). The bonds between AMP and aptamer are provided by several H-bonds and pair stacking.rnIn the novel concept, the aptamer was split into two parts (oligo a and oligo b). One part was immobilized on the tip and the other one on the substrate. Approaching the tip to the substrate, oligo a and oligo b partially hybridized and the binding pockets were formed. After adding AMP into the buffer solution, the AMP bound in the pockets and additional H-bonds were formed. Upon retraction of the tip, the rupture force of the AMP-split aptamer complex was measured. In the presence of excess AMP, the rupture force increased by about 10 pN. rnThe dissociation constant of the AMP-split aptamer complex was measured on a single molecular level (~ 4 µM) by varying the AMP concentrations and measuring the rupture force at each concentration. Furthermore, the rupture force was amplified when more pockets were added to the split aptamer. rnIn the absence of AMP, the thermal off-rate was slightly reduced compared to that in the presence of AMP, indicating that the AMP stabilized the aptamer. The rupture forces at different loading rates did not follow the logarithmic fit which was usually used to describe the dependence of rupture forces at different loading rates of oligonucleotides. Two distinguished regimes at low and high loading rates were obtained. The two regimes were explained by a model in which the oligos located at the pockets were stretched at high loading rates. rnThe contribution of a single H-bond formed between the AMP molecule and the split aptamer was measured by reducing the binding groups of the AMP. The rupture forces reduce corresponding to the reduction of the binding groups. The phosphate group played the most important role in the formation of H-bond network between the AMP molecule and the split aptamer. rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plasmonische Metallnanopartikel bündeln, verstärken und beeinflussen Licht auf nanoskopischer Ebene. Diese grundlegende Eigenschaft kommt von koheränten, kollektiven Schwingungen der Leitungsbandelektronen, die von einfallendem Licht resonant angeregt und lokalisierte Oberflächenplasmonenresonanz (LSPR) oder ‚Partikelplasmonen‘ genannt werden. Plasmonen in Metallnanopartikeln wurden bisher z.B. zur Erkennen von pathogenen Biomolekülen, bei der photothermischen Therapie und zur Verbesserung der Effizienz von Solarzellen verwendet. In dieser Arbeit werde ich meinen Fokus auf die Synthese und Funktionalisierung von Goldnanopartikeln zur Anwendung als Sensoren legen.rnrnKürzliche Verbesserungen in der nasschemischen Synthese haben zur Herstellung von Goldnanopartikel mit unterschiedlichen Formen und Größen geführt, die sich in ihren Sensoreigenschaften unterscheiden. Unter den unterschiedlichen Sensorgeometrien sind Goldnanostäbchen die bevorzugte Form zur Biomolekül-Sensorik durch LSPR. Nanostäbchen werden durch eine positiv geladene CTAB-Schicht stabilisiert, die Proteine bei neutralem pH-Wert anziehen kann. Die Adsorption und Desorption von Proteinen an der Nanopartikeloberfläche und damit die Bindungskinetiken von Proteinen kann auf Einzelmolekülebene erforscht werden. Ich zeige hier eine Studie mit hoher örtlicher und zeitlicher Auflösung um einzelne Bindungsereignisse von Fibronectin auf Goldnanostäbchen darzustellen.rnrnGoldnanostäbchen müssen mit spezifischen biologischen Erkennungselementen funktionalisiert werden um eine Analyterkennung oder Proteinwechselwirkung zu erreichen. Ich funktionalisiere Goldnanostäbchen mit kurzen DNA-Sequenzen (Aptamer-Sequenzen und NTA konjugierten Polihymidinen) und habe anhand diese unterschiedlich sensitiven Partikel eine Studie mit verschiedenen Analyten (oder Protein-Protein Wechselwirkungen) erfolgreich durchgeführt.rn rnPlasmonen von Nanopartikel-Clustern koppeln miteinander, was ihre Resonanzenergie ändert. Der kontrollierte Zusammenbau von Nanopartikeln zu Dimeren oder höher geordneten Strukturen wie ‚Core-Satellites‘ können dazu dienen ihre Sensitivität zu erhöhen. Diese Cluster bieten eine hohe Sensitivität auf Grund der Anwesenheit von plasmonischen Hotspots in der Lücke zwischen zwei Partikeln. Die Plasmonkopplung ist ein Phänomen, das abhängig vom Abstand zweier Partikel zueinander ist und bildet somit die Basis von sogenannten Plasmon-Linealen. Ich habe eine Strategie entwickelt um Dimere aus Hsp90 funktionalisierten Goldnanosphären zu bilden. Diese Technik wird nicht durch Ausbleichen oder das Blinken von Farbstoffen limitiert und ich zeige zum ersten Mal wie man dadurch dynamische Proteinkonformationen untersuchen kann.rn