3 resultados para Apple tree -- Climatic factors

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Fragmentierung von Waldgebieten, der Verlust geeigneter Habitate, die Invasion exotischer Arten und globale Klimaveränderung haben auf Artengemeinschaften erhebliche Auswirkungen. Vögel dienen in vielen Fällen als Indikatorarten für Umweltveränderungen und, besonders, für Veränderungen im Zusammenhang mit globaler Erwärmung. In meiner Arbeit habe ich zuerst einen Literaturüberblick über die Auswirkungen globaler Klimaveränderung auf die Verbreitungsgebiete, den Artenreichtum und die Zusammensetzung von Vogelgemeinschaften dargestellt. Zahlreiche Untersuchungen zeigen, daß die Grenzen der Verbreitungsgebiete der meisten Vogelarten mit klimatischen Faktoren korrelieren. Verschiebungen der Verbreitungsgebiete in nördliche Richtung oder in höhere Regionen im Gebirge konnten bereits für viele temperate Vogelarten beobachtet werden. Weiterhin wurde ein zunehmender Artenreichtum besonders in nördlichen Breiten und in höheren Lagen für viele temperate Vogelgemeinschaften vorhergesagt. In trockenen Gebieten ist dagegen mit einer Abnahme des Artenreichtums zu rechnen. Im zweiten Teil meiner Arbeit habe ich untersucht, ob beobachtete Veränderungen in der Zusammensetzung europäischer Vogelgemeinschaften tatsächlich durch aktuelle Klimaveränderungen beeinflußt werden. Das Zugverhalten der Arten war dabei ein Schwerpunkt der Untersuchung, weil zu erwarten war, daß Vogelarten mit verschiedenem Zugverhalten unterschiedlich auf Klimaveränderungen reagieren. Ich habe ein Regressionsmodell genutzt, welches die räumliche Beziehung zwischen dem Anteil von Langstreckenziehern, Kurzstreckenziehern und Standvögeln in europäischen Vogelgemeinschaften und verschiedenen Klimavariablen beschreibt. Für 21 Gebiete in Europa habe ich Daten über beobachtete Veränderungen in der Struktur der Vogelgemeinschaften und isochrone Klimaveränderungen zusammengetragen. Mit Hilfe dieser Klimaveränderungen und dem räumlichen Regressionsmodell konnte ich berechnen, welche Veränderungen in den Vogelgemeinschaften aufgrund der veränderten Klimabedingungen zu erwarten wären und sie mit beobachteten Veränderungen vergleichen. Beobachtete und berechnete Veränderungen korrelierten signifikant miteinander. Die beobachteten Veränderungen konnten nicht durch räumliche Autokorrelationseffekte oder durch alternative Faktoren, wie z.B. Veränderungen in der Landnutzung, erklärt werden. Im dritten Teil der Arbeit untersuchte ich für eine mitteleuropäische Vogelgemeinschaft welchen Einfluß Habitatveränderungen, die Invasion exotischer Arten und die Klimaveränderung auf Veränderungen der Häufigkeit und Verbreitungsgröße der 159 Vogelarten am Bodensee zwischen 1980-1981 und 2000-2002 hatten. Dabei konnte gezeigt werden, daß Veränderungen in der regionalen Abundanz sowohl durch Habitatveränderungen als auch durch Klimavänderungen hervorgerufen wurden. Exotische Arten schienen in dieser Zeit keinen bedeutenden Einfluß zu haben. Besonders bei Agrarlandarten, Arten mit nördlicheren Verbreitungsgebieten und bei Langstreckenziehern konnten signifikante Abnahmen in der Abundanz beobachtet werden. Vor allem die anhaltenden negativen Bestandsveränderungen bei Langstreckenziehern und die in den letzten zehn Jahren aufgetretenen Abnahmen nördlicher verbreiteter Vogelarten deuten darauf hin, daß die Klimaveränderung aktuell als der größte Einfluß für Vögel in Europa angesehen werden muß. Insgesamt zeigen die Ergebnisse dieser Arbeit, daß sich der anhaltende Druck auf die Umwelt in erster Linie durch Habitat- und Klimaveränderungen manifestiert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Das Kolumnarwachstum beim Apfel (Malus x domestica) geht auf eine in den frühen 1960er Jahren entdeckte Zufallsmutation zurück. Die daraus resultierende Sprossmutante ist von großem wirtschaftlichem Interesse, da diese sehr kompakte Wuchsform unter anderem zu einer enormen Ertragssteigerung durch eine hohe Pflanzdichte der Bäume führt. Das Ziel der Arbeit ist die Entschlüsselung der molekularen Ursache dieser Mutation, die bisher weitgehend ungeklärt ist. Die Analyse wurde durch die Erstellung einer Referenzsequenz der Co-Zielregion einer kolumnaren Apfelsorte sowie durch die Konstruktion eng gekoppelter molekularer Marker realisiert. Durch die Konstruktion von genomischen Apfel-BAC-Bibliotheken mit mehrfacher Genomabdeckung und die Erstellung geeigneter Sonden wurde die Co-Region kloniert und deren Sequenz bestimmt. In Kombination zu dieser klassischen positionellen Klonierungsstrategie wurden genomische Illumina „mate pair“-Bibliotheken erstellt, sequenziert und bioinformatisch analysiert, um die genomische Region vollständig zu annotieren. Somit wurde eine vollständige genomische Referenz der Co-Region einer kolumnaren Apfelsorte erstellt, die die Grundlage für weitere Analysen bildet. Auf Basis dieser Referenz konnte die Co-Mutation in Form der Integration des LTR-Retrotransposons Gypsy-44 im kolumnaren Chromosom an Position 18,79 Mbp auf Chromosom 10 lokalisiert werden. Darüber hinaus konnten Transposon-basierende molekulare Marker erstellt werden, die eine verlässliche Genotypisierung von Apfelbäumen in Bezug auf das Kolumnarwachstum ermöglichen und dies unabhängig von der verwendeten Apfelsorte. Der genaue Wirkmechanismus von Gypsy-44, der zur Ausprägung dieses extremen Phänotyps führt, ist bislang unklar. Zusammenfassend lässt sich sagen, dass die molekulare Ursache für das kolumnare Wachstum aufgeklärt werden konnte und zudem die ersten molekularen Marker erstellt wurden, die eine sortenunabhängige Differenzierung zwischen kolumnaren und nicht kolumnaren Apfelbäumen ermöglichen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many plant species, the genetic template of early life-stages is formed by animal-mediated pollination and seed dispersal and has profound impact on further recruitment and population dynamics. Understanding the impact of pollination and seed dispersal on genetic patterns is a central issue in plant population biology. In my thesis, I investigated (i) contemporary dispersal and gene flow distances as well as (ii) genetic diversity and spatial genetic structure (SGS) across subsequent recruitment stages in a population of the animal-pollinated and dispersed tree Prunus africana in Kakamega Forest, West Kenya. Using microsatellite markers and parentage analyses, I inferred distances of pollen dispersal (father-to-mother), seed dispersal/maternal gene flow (mother-to-offspring) as well as paternal gene flow (father-to-offspring) for four early life stages of the species (seeds and fruits, current year seedlings, seedlings ≤ 3yr, seedlings > 3yr). Distances of pollen and seed dispersal as well as paternal gene flow were significantly shorter than expected from the spatial arrangement of trees and sampling plots. They were not affected by the density of conspecific trees in the surrounding. At the propagule stage, mean pollen dispersal distances were considerably (23-fold) longer than seed dispersal distances, and paternal gene flow distances exceeded maternal gene flow by a factor of 25. Seed dispersal distances were remarkably restricted, potentially leading to a strong initial SGS. The initial genetic template created by pollination and seed dispersal was extensively altered during later recruitment stages. Potential Janzen-Connell effects led to markedly increasing distances between offspring and both parental trees in older life stages. This showed that distance and density-dependent mortality factors are not exclusively related to the mother tree, but also to the father. Across subsequent recruitment stages, the pollen to seed dispersal ratio and the paternal to maternal gene flow ratio dropped to 2.1 and 3.4, respectively, in seedlings > 3yr. The relative changes in effective pollen dispersal, seed dispersal, and paternal gene flow distances across recruitment stages elucidate the mechanisms affecting the contribution of the two processes pollen and seed dispersal to overall gene flow. Using the same six microsatellite loci, I analyzed genetic diversity and SGS across five life stages, from seed rain to adults. Levels of genetic diversity within the studied P. africana population were comparable to other Prunus species and did not vary across life stages. In congruence with the short seed dispersal distances, I found significant SGS in all life stages. SGS decreased from seed and early seedling stages to older juvenile stages, and it was higher in adults than in late juveniles of the next generation. A comparison of the data with direct assessments of contemporary gene flow patterns indicate that distance- or density-dependent mortality, potentially due to Janzen-Connell effects, led to the initial decrease in SGS. Intergeneration variation in SGS could have been driven by variation in demographic processes, the effect of overlapping generations, and local selection processes. Overall, my study showed that complex sequential processes during recruitment contribute to the spatial genetic structure of tree populations. It highlights the importance of a multistage perspective for a comprehensive understanding of the impact of animal-mediated pollen and seed dispersal on spatial population dynamics and genetic patterns of trees.