2 resultados para Acute phase protein
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Inflammation-mediated neurodegeneration occurs in the acute and the chronic/progressive phases of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Classically-activated microglia (M1) are key players mediating this process through secretion of soluble factors including nitric oxide (NO) and tumor necrosis factor (TNF). Here, galectin-1, an endogenous glycan-binding protein, was identified as a pivotal regulatory mechanism that limits M1 microglia activation and neurodegeneration, by targeting the activation of p38MAPK- and CREB-dependent pathways and hierarchically controlling downstream pro-inflammatory mediators such as iNOS, TNF and CCL2. Galectin-1 is highly expressed in the acute phase of EAE and its targeted deletion results in pronounced inflammation-induced neurodegeneration. These findings identify an essential role of galectin-1-glycan lattices in tempering microglia activation, brain inflammation and neurodegeneration with critical therapeutic implications in relapsing-remitting and secondary progressive MS.rnMicroglia with distinct phenotypes are implicated in neurotoxicity, neuroprotection, and in modulation of endogenous repair by NSCs. However the precise molecular mechanisms underlying this diversity in fuction are still unknown. rnUsing a model of EAE, transcriptional profiling of isolated SVZ microglia from the acute and chronic disease phases of EAE was performed. The results from this study suggest that microglia exhibit disease phase specific gene expression signatures, that correspond to unique GO functions and genomic networks. These data demonstrate for the first time, distinct transcriptional networks of microglia activation in vivo, that support their role as mediators of injury or repair.
Resumo:
Der geschwindigkeitsbestimmende Schritt bei der Biosynthese von Steroidhormonen ist der Transport von Cholesterin von der äußeren zur inneren Mitochondrienmembran, wo es zu dem Steroid Pregnenolon umgewandelt wird. Für diesen Transport ist das StAR-Protein (Steroidogenic Acute Regulatory Protein) notwendig. Ein weiteres an der Bildung von Steroidhormonen beteiligtes Protein ist das MLN64-Protein. Beide Proteine besitzen so genannte START-Domänen (StAR related Lipid Transfer-Domänen), die Cholesterin binden können. In dieser Arbeit konnte gezeigt werden, dass die START-Domänen von StAR und MLN64 Cholesterin auf unterschiedliche Weise binden. Es ist noch nicht geklärt, auf welche Weise das StAR-Protein den Cholesterintransport in die Mitochondrien bewirkt. Das StAR-Protein könnte Cholesterin binden und als Cholesterintransporter zwischen äußerer und innerer Mitochondrienmembran fungieren. Nach einer anderen Hypothese wirkt das StAR-Protein ausschließlich an der äußeren Mitochondrienmembran. Es wird auch postuliert, dass das StAR-Protein in einem teilweise entfalteten Zustand vorliegen muss, um seine Funktion erfüllen zu können. In dieser Arbeit konnte gezeigt werden, dass StAR ein fotoreaktives Cholesterinderivat bindet. Die Cholesterinbindungsstelle des StAR-Proteins konnte eingegrenzt werden. Es wurden Experimente durchgeführt, um zu überprüfen, ob das Protein tatsächlich nur in teilweise entfaltetem Zustand aktiv ist. Die Cholesterinbindung des MLN64-Proteins wurde ebenfalls mit dem fotoreaktiven Cholesterinderivat untersucht. Dabei zeigte sich, dass MLN64 offenbar mehrere Bindungsstellen für Cholesterin besitzt. Weitere Experimente beschäftigten sich mit der Charakterisierung der Cholesterinbindungsstelle des humanen Oxytocinrezeptors, eines G-Protein gekoppelten Hormonrezeptors, der durch Cholesterin reguliert wird. Dabei kam auch wieder das fotoreaktive Cholesterinderivat zum Einsatz. Außerdem wurden in dieser Arbeit Experimente durchgeführt, die sich mit der Regulation der Cholesterinbiosynthese befassten. Die Biosynthese des Cholesterins wird reguliert, indem in der Membran des Endoplasmatischen Retikulums verankerte Transkriptionsfaktoren proteolytisch freigesetzt werden. Das passiert nur dann, wenn der zelluläre Cholesterinspiegel niedrig ist. Bei diesem Regulationsmechanismus spielt das Protein SCAP eine zentrale Rolle (Sterol responsive element binding protein Cleavage Activating Protein). SCAP bindet Cholesterin spezifisch und wird dadurch reguliert. Im Rahmen dieser Arbeit konnte der Bereich von SCAP eingegrenzt werden, der Cholesterin bindet. Ebenso konnte gezeigt werden, dass die Interaktion von SCAP mit einem anderen, als Insig bezeichneten Protein indirekt durch das Cholesterinderivat 25-Hydroxycholesterin reguliert wird.