1 resultado para Acceleration (Physiology)

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the central nervous system (CNS), oligodendrocytes form the multilamellar and compacted myelin sheath by spirally wrapping around defined axons with their specialised plasma membrane. Myelin is crucial for the rapid saltatory conduction of nerve impulses and for the preservation of axonal integrity. The absence of the major myelin component Myelin Basic Protein (MBP) results in an almost complete failure to form compact myelin in the CNS. The mRNA of MBP is sorted to cytoplasmic RNA granules and transported to the distal processes of oligodendrocytes in a translationally silent state. A main mediator of MBP mRNA localisation is the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 which binds to the cis-acting A2 response element (A2RE) in the 3’UTR of MBP mRNA. A signalling cascade had been identified that triggers local translation of MBP at the axon-glial contact site, involving the neuronal cell adhesion molecule (CAM) L1, the oligodendroglial plasma membrane-tethered Fyn kinase and Fyn-dependent phosphorylation of hnRNP A2. This model was confirmed here, showing that L1 stimulates Fyn-dependent phosphorylation of hnRNP A2 and a remodelling of A2-dependent RNA granule structures. Furthermore, the RNA helicase DDX5 was confirmed here acting together with hnRNP A2 in cytoplasmic RNA granules and is possibly involved in MBP mRNA granule dynamics.rnLack of non-receptor tyrosine kinase Fyn activity leads to reduced levels of MBP and hypomyelination in the forebrain. The multiadaptor protein p130Cas and the RNA-binding protein hnRNP F were verified here as additional targets of Fyn in oligodendrocytes. The findings point at roles of p130Cas in the regulation of Fyn-dependent process outgrowth and signalling cascades ensuring cell survival. HnRNP F was identified here as a novel constituent of oligodendroglial cytoplasmic RNA granules containing hnRNP A2 and MBP mRNA. Moreover, it was found that hnRNP F plays a role in the post-transcriptional regulation of MBP mRNA and that defined levels of hnRNP F are required to facilitate efficient synthesis of MBP. HnRNP F appears to be directly phosphorylated by Fyn kinase what presumably contributes to the initiation of translation of MBP mRNA at the plasma membrane.rnFyn kinase signalling thus affects many aspects of oligodendroglial physiology contributing to myelination. Post-transcriptional control of the synthesis of the essential myelin protein MBP by Fyn targets is particularly important. Deregulation of these Fyn-dependent pathways could thus negatively influence disorders involving the white matter of the nervous system.rnrn