4 resultados para APTAMER-BASED SENSORS

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Volatile amines are prominent indicators of food freshness, as they are produced during many microbiological food degradation processes. Monitoring and indicating the volatile amine concentration within the food package by intelligent packaging solutions might therefore be a simple yet powerful way to control food safety throughout the distribution chain.rnrnIn this context, this work aims to the formation of colourimetric amine sensing surfaces on different substrates, especially transparent PET packaging foil. The colour change of the deposited layers should ideally be discernible by the human eye to facilitate the determination by the end-user. rnrnDifferent tailored zinc(II) and chromium(III) metalloporphyrins have been used as chromophores for the colourimetric detection of volatile amines. A new concept to increase the porphyrins absorbance change upon exposure to amines is introduced. Moreover, the novel porphyrins’ processability during the deposition process is increased by their enhanced solubility in non-polar solvents.rnrnThe porphyrin chromophores have successfully been incorporated into polysiloxane matrices on different substrates via a dielectric barrier discharge enhanced chemical vapour deposition. This process allows the use of nitrogen as a cheap and abundant plasma gas, produces minor amounts of waste and by-products and can be easily introduced into (existing) roll-to-roll production lines. The formed hybrid sensing layers tightly incorporate the porphyrins and moreover form a porous structure to facilitate the amines diffusion to and interaction with the chromophores.rnrnThe work is completed with the thorough analysis of the porphyrins’ amine sensing performance in solution as well as in the hybrid coatings . To reveal the underlying interaction mechanisms, the experimental results are supported by DFT calculations. The deposited layers could be used for the detection of NEt3 concentrations below 10 ppm in the gas phase. Moreover, the coated foils have been tested in preliminary food storage experiments. rnrnThe mechanistic investigations on the interaction of amines with chromium(III) porphyrins revealed a novel pathway to the formation of chromium(IV) oxido porphyrins. This has been used for electrochemical epoxidation reactions with dioxygen as the formal terminal oxidant.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis was to apply the techniques of the atomic force microscope (AFM) to biological samples, namely lipid-based systems. To this end several systems with biological relevance based on self-assembly, such as a solid-supported membrane (SSM) based sensor for transport proteins, a bilayer of the natural lipid extract from an archaebacterium, and synaptic vesicles, were investigated by the AFM. For the characterization of transport proteins with SSM-sensors proteoliposomes are adsorbed that contain the analyte (transport protein). However the forces governing bilayer-bilayer interactions in solution should be repulsive under physiological conditions. I investigated the nature of the interaction forces with AFM force spectroscopy by mimicking the adsorbing proteoliposome with a cantilever tip, which was functionalized with charged alkane thiols. The nature of the interaction is indeed repulsive, but the lipid layers assemble in stacks on the SSM, which expose their unfavourable edges to the medium. I propose a model by which the proteoliposomes interact with these edges and fuse with the bilayer stacks, so forming a uniform layer on the SSM. Furthermore I characterized freestanding bilayers from a synthetic phospholipid with a phase transition at 41°C and from a natural lipid extract of the archaebacterium Methanococcus jannaschii. The synthetic lipid is in the gel-phase at room temperature and changes to the fluid phase when heated to 50°C. The bilayer of the lipid extract shows no phase transition when heated from room temperature to the growth temperature (~ 50°C) of the archeon. Synaptic vesicles are the containers of neurotransmitter in nerve cells and the synapsins are a family of extrinsic membrane proteins, that are associated with them, and believed to control the synaptic vesicle cycle. I used AFM imaging and force spectroscopy together with dynamic light scattering to investigate the influence of synapsin I on synaptic vesicles. To this end I used native, untreated synaptic vesicles and compared them to synapsin-depleted synaptic vesicles. Synapsin-depleted vesicles were larger in size and showed a higher tendency to aggregate compared to native vesicles, although their mechanical properties were alike. I also measured the aggregation kinetics of synaptic vesicles induced by synapsin I and found that the addition of synapsin I promotes a rapid aggregation of synaptic vesicles. The data indicate that synapsin I affects the stability and the aggregation state of synaptic vesicles, and confirm the physiological role of synapsins in the assembly and regulation of synaptic vesicle pools within nerve cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

“Plasmon” is a synonym for collective oscillations of the conduction electrons in a metal nanoparticle (excited by an incoming light wave), which cause strong optical responses like efficient light scattering. The scattering cross-section with respect to the light wavelength depends not only on material, size and shape of the nanoparticle, but also on the refractive index of the embedding medium. For this reason, plasmonic nanoparticles are interesting candidates for sensing applications. Here, two novel setups for rapid spectral investigations of single nanoparticles and different sensing experiments are presented.rnrnPrecisely, the novel setups are based on an optical microscope operated in darkfield modus. For the fast single particle spectroscopy (fastSPS) setup, the entrance pinhole of a coupled spectrometer is replaced by a liquid crystal device (LCD) acting as spatially addressable electronic shutter. This improvement allows the automatic and continuous investigation of several particles in parallel for the first time. The second novel setup (RotPOL) usesrna rotating wedge-shaped polarizer and encodes the full polarization information of each particle within one image, which reveals the symmetry of the particles and their plasmon modes. Both setups are used to observe nanoparticle growth in situ on a single-particle level to extract quantitative data on nanoparticle growth.rnrnUsing the fastSPS setup, I investigate the membrane coating of gold nanorods in aqueous solution and show unequivocally the subsequent detection of protein binding to the membrane. This binding process leads to a spectral shift of the particles resonance due to the higher refractive index of the protein compared to water. Hence, the nanosized addressable sensor platform allows for local analysis of protein interactions with biological membranes as a function of the lateral composition of phase separated membranes.rnrnThe sensitivity on changes in the environmental refractive index depends on the particles’ aspect ratio. On the basis of simulations and experiments, I could present the existence of an optimal aspect ratio range between 3 and 4 for gold nanorods for sensing applications. A further sensitivity increase can only be reached by chemical modifications of the gold nanorods. This can be achieved by synthesizing an additional porous gold cage around the nanorods, resulting in a plasmon sensitivity raise of up to 50 % for those “nanorattles” compared to gold nanorods with the same resonance wavelength. Another possibility isrnto coat the gold nanorods with a thin silver shell. This reduces the single particle’s resonance spectral linewidth about 30 %, which enlarges the resolution of the observable shift. rnrnThis silver coating evokes the interesting effect of reducing the ensemble plasmon linewidth by changing the relation connecting particle shape and plasmon resonance wavelength. This change, I term plasmonic focusing, leads to less variation of resonance wavelengths for the same particle size distribution, which I show experimentally and theoretically.rnrnIn a system of two coupled nanoparticles, the plasmon modes of the transversal and longitudinal axis depend on the refractive index of the environmental solution, but only the latter one is influenced by the interparticle distance. I show that monitoring both modes provides a self-calibrating system, where interparticle distance variations and changes of the environmental refractive index can be determined with high precision.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biosensors find wide application in clinical diagnostics, bioprocess control and environmental monitoring. They should not only show high specificity and reproducibility but also a high sensitivity and stability of the signal. Therefore, I introduce a novel sensor technology based on plasmonic nanoparticles which overcomes both of these limitations. Plasmonic nanoparticles exhibit strong absorption and scattering in the visible and near-infrared spectral range. The plasmon resonance, the collective coherent oscillation mode of the conduction band electrons against the positively charged ionic lattice, is sensitive to the local environment of the particle. I monitor these changes in the resonance wavelength by a new dark-field spectroscopy technique. Due to a strong light source and a highly sensitive detector a temporal resolution in the microsecond regime is possible in combination with a high spectral stability. This opens a window to investigate dynamics on the molecular level and to gain knowledge about fundamental biological processes.rnFirst, I investigate adsorption at the non-equilibrium as well as at the equilibrium state. I show the temporal evolution of single adsorption events of fibrinogen on the surface of the sensor on a millisecond timescale. Fibrinogen is a blood plasma protein with a unique shape that plays a central role in blood coagulation and is always involved in cell-biomaterial interactions. Further, I monitor equilibrium coverage fluctuations of sodium dodecyl sulfate and demonstrate a new approach to quantify the characteristic rate constants which is independent of mass transfer interference and long term drifts of the measured signal. This method has been investigated theoretically by Monte-Carlo simulations but so far there has been no sensor technology with a sufficient signal-to-noise ratio.rnSecond, I apply plasmonic nanoparticles as sensors for the determination of diffusion coefficients. Thereby, the sensing volume of a single, immobilized nanorod is used as detection volume. When a diffusing particle enters the detection volume a shift in the resonance wavelength is introduced. As no labeling of the analyte is necessary the hydrodynamic radius and thus the diffusion properties are not altered and can be studied in their natural form. In comparison to the conventional Fluorescence Correlation Spectroscopy technique a volume reduction by a factor of 5000-10000 is reached.