1 resultado para 894

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis a connection between triply factorised groups and nearrings is investigated. A group G is called triply factorised by its subgroups A, B, and M, if G = AM = BM = AB, where M is normal in G and the intersection of A and B with M is trivial. There is a well-known connection between triply factorised groups and radical rings. If the adjoint group of a radical ring operates on its additive group, the semidirect product of those two groups is triply factorised. On the other hand, if G = AM = BM = AB is a triply factorised group with abelian subgroups A, B, and M, G can be constructed from a suitable radical ring, if the intersection of A and B is trivial. In these triply factorised groups the normal subgroup M is always abelian. In this thesis the construction of triply factorised groups is generalised using nearrings instead of radical rings. Nearrings are a generalisation of rings in the sense that their additive groups need not be abelian and only one distributive law holds. Furthermore, it is shown that every triply factorised group G = AM = BM = AB can be constructed from a nearring if A and B intersect trivially. Moreover, the structure of nearrings is investigated in detail. Especially local nearrings are investigated, since they are important for the construction of triply factorised groups. Given an arbitrary p-group N, a method to construct a local nearring is presented, such that the triply factorised group constructed from this nearring contains N as a subgroup of the normal subgroup M. Finally all local nearrings with dihedral groups of units are classified. It turns out that these nearrings are always finite and their order does not exceed 16.