1 resultado para 894
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Filtro por publicador
- Repository Napier (1)
- Aberdeen University (3)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (2)
- Aston University Research Archive (5)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (4)
- Biblioteca Digital de Artesanías de Colombia (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- Biblioteca Digital Loyola - Universidad de Deusto (1)
- Bibloteca do Senado Federal do Brasil (4)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (28)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (14)
- CentAUR: Central Archive University of Reading - UK (8)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (53)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (95)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (5)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (19)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (2)
- Línguas & Letras - Unoeste (1)
- Livre Saber - Repositório Digital de Materiais Didáticos - SEaD-UFSCar (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Memoria Académica - FaHCE, UNLP - Argentina (9)
- Ministerio de Cultura, Spain (13)
- Nottingham eTheses (2)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (432)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (16)
- Queensland University of Technology - ePrints Archive (19)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (32)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- SerWisS - Server für Wissenschaftliche Schriften der Fachhochschule Hannover (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (18)
- Universidad Politécnica de Madrid (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (3)
- Universidade Metodista de São Paulo (7)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (5)
- Université de Montréal, Canada (2)
- University of Connecticut - USA (1)
- University of Michigan (9)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (1)
Resumo:
In this thesis a connection between triply factorised groups and nearrings is investigated. A group G is called triply factorised by its subgroups A, B, and M, if G = AM = BM = AB, where M is normal in G and the intersection of A and B with M is trivial. There is a well-known connection between triply factorised groups and radical rings. If the adjoint group of a radical ring operates on its additive group, the semidirect product of those two groups is triply factorised. On the other hand, if G = AM = BM = AB is a triply factorised group with abelian subgroups A, B, and M, G can be constructed from a suitable radical ring, if the intersection of A and B is trivial. In these triply factorised groups the normal subgroup M is always abelian. In this thesis the construction of triply factorised groups is generalised using nearrings instead of radical rings. Nearrings are a generalisation of rings in the sense that their additive groups need not be abelian and only one distributive law holds. Furthermore, it is shown that every triply factorised group G = AM = BM = AB can be constructed from a nearring if A and B intersect trivially. Moreover, the structure of nearrings is investigated in detail. Especially local nearrings are investigated, since they are important for the construction of triply factorised groups. Given an arbitrary p-group N, a method to construct a local nearring is presented, such that the triply factorised group constructed from this nearring contains N as a subgroup of the normal subgroup M. Finally all local nearrings with dihedral groups of units are classified. It turns out that these nearrings are always finite and their order does not exceed 16.