2 resultados para 720205 Industry costs and structure
em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha
Resumo:
Understanding the origins of the mechanical properties and its correlation withrnthe microstructure of gel systems is of great scientific and industrial interest. Inrngeneral, colloidal gels can be classified into chemical and physical gels, accordingrnto the life time of the network bonds. The characteristic di↵erences in gelationrndynamics can be observed with rheological measurements.rnAs a model system, a mixture of sodium silicate and low concentration sulfuric acidrnwas used. Nano-sized silica particles grow and aggregate to a system-spanning gelrnnetwork. The influence of the finite solubility of silica at high pH on the gelationrnwas studied with classical and piezo rheometer. The storage modulus of therngel grew logarithmically with time with two distinct growth laws. A relaxationrnat low frequency was observed in the frequency dependent measurements. I attributernthese two behaviors as a sign of structural rearrangements due to the finiternsolubility of silica at high pH. The reaction equilibrium between formation andrndissolution of bonds leads to a finite life time of the bonds and behavior similar tornphysical gel. The frequency dependence was more pronounced for lower water concentrations,rnhigher temperatures and shorter reaction times. With two relaxationrnmodels, I deduced characteristic relaxation times from the experimental data. Besidesrnrheology, the evolution of silica gels at high pH on di↵erent length scales wasrnstudied by NMR and dynamic light scattering. The results revealed that the primaryrnparticles existed already in sodium silicate and aggregated after the mixingrnof reactants due to a chemical reaction. Throughout the aggregation process thernsystem was in its chemical reaction equilibrium. Applying large oscillatory shearrnstrain to the gel allowed for modifying the gel modulus. The e↵ect of shear andrnshear history on the rheological properties of the gel were investigated. The storagernmodulus of the final gel increased with increasing strain. This behavior can be explained with (i) shear-induced aggregate compaction and (ii) combination ofrnbreakage and new formation of bonds.rnIn comparison with the physical gel-like behavior of the silica gel at high pH, typicalrnchemical gel features were exhibited by other gels formed from various chemicalrnreactions. Influences of the chemical structure modification on the gelation wererninvestigated with the piezo-rheometer. The external stimuli can be applied to tunernthe mechanical properties of the gel systems.
Resumo:
Coarse graining is a popular technique used in physics to speed up the computer simulation of molecular fluids. An essential part of this technique is a method that solves the inverse problem of determining the interaction potential or its parameters from the given structural data. Due to discrepancies between model and reality, the potential is not unique, such that stability of such method and its convergence to a meaningful solution are issues.rnrnIn this work, we investigate empirically whether coarse graining can be improved by applying the theory of inverse problems from applied mathematics. In particular, we use the singular value analysis to reveal the weak interaction parameters, that have a negligible influence on the structure of the fluid and which cause non-uniqueness of the solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable against the mentioned discrepancies. Then, we compare it to the existing physical methods - the Iterative Boltzmann Inversion and the Inverse Monte Carlo method, which are fast and well adapted to the problem, but sometimes have convergence problems.rnrnFrom analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful approximation of the structure and use it to derive a modification of the Levenberg-Marquardt method. We engage the latter for reconstruction of the interaction parameters from experimental data for liquid argon and nitrogen. We show that the modified method is stable, convergent and fast. Further, the singular value analysis of the structure and its approximation allows to determine the crucial interaction parameters, that is, to simplify the modeling of interactions. Therefore, our results build a rigorous bridge between the inverse problem from physics and the powerful solution tools from mathematics. rn