2 resultados para 290207 Satellite, Space Vehicle and Missile Design

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Kernmagnetresonanz (NMR) ist eine vielseitige Technik, die auf spin-tragende Kerne angewiesen ist. Seit ihrer Entdeckung ist die Kernmagnetresonanz zu einem unverzichtbaren Werkzeug in unzähligen Anwendungen der Physik, Chemie, Biologie und Medizin geworden. Das größte Problem der NMR ist ihre geringe Sensitivtät auf Grund der sehr kleinen Energieaufspaltung bei Raumtemperatur. Für Protonenspins, die das größte magnetogyrische Verhältnis besitzen, ist der Polarisationsgrad selbst in den größten verfügbaren Magnetfeldern (24 T) nur ~7*10^(-5).rnDurch die geringe inhärente Polarisation ist folglich eine theoretische Sensitivitätssteigerung von mehr als 10^4 möglich. rnIn dieser Arbeit wurden verschiedene technische Aspekte und unterschiedliche Polarisationsagenzien für Dynamic Nuclear Polarization (DNP) untersucht.rnDie technische Entwicklung des mobilen Aufbaus umfasst die Verwendung eines neuen Halbach Magneten, die Konstruktion neuer Probenköpfe und den automatisierten Ablauf der Experimente mittels eines LabVIEW basierten Programms. Desweiteren wurden zwei neue Polarisationsagenzien mit besonderen Merkmalen für den Overhauser und den Tieftemperatur DNP getestet. Zusätzlich konnte die Durchführbarkeit von NMR Experimenten an Heterokernen (19F und 13C) im mobilen Aufbau bei 0,35 T gezeigt werden. Diese Ergebnisse zeigen die Möglichkeiten der Polarisationstechnik DNP auf, wenn Heterokerne mit einem kleinen magnetogyrischen Verhältnis polarisiert werden müssen.rnDie Sensitivitätssteigerung sollte viele neue Anwendungen, speziell in der Medizin, ermöglichen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vielen Industriezweigen, zum Beispiel in der Automobilindustrie, werden Digitale Versuchsmodelle (Digital MockUps) eingesetzt, um die Konstruktion und die Funktion eines Produkts am virtuellen Prototypen zu überprüfen. Ein Anwendungsfall ist dabei die Überprüfung von Sicherheitsabständen einzelner Bauteile, die sogenannte Abstandsanalyse. Ingenieure ermitteln dabei für bestimmte Bauteile, ob diese in ihrer Ruhelage sowie während einer Bewegung einen vorgegeben Sicherheitsabstand zu den umgebenden Bauteilen einhalten. Unterschreiten Bauteile den Sicherheitsabstand, so muss deren Form oder Lage verändert werden. Dazu ist es wichtig, die Bereiche der Bauteile, welche den Sicherhabstand verletzen, genau zu kennen. rnrnIn dieser Arbeit präsentieren wir eine Lösung zur Echtzeitberechnung aller den Sicherheitsabstand unterschreitenden Bereiche zwischen zwei geometrischen Objekten. Die Objekte sind dabei jeweils als Menge von Primitiven (z.B. Dreiecken) gegeben. Für jeden Zeitpunkt, in dem eine Transformation auf eines der Objekte angewendet wird, berechnen wir die Menge aller den Sicherheitsabstand unterschreitenden Primitive und bezeichnen diese als die Menge aller toleranzverletzenden Primitive. Wir präsentieren in dieser Arbeit eine ganzheitliche Lösung, welche sich in die folgenden drei großen Themengebiete unterteilen lässt.rnrnIm ersten Teil dieser Arbeit untersuchen wir Algorithmen, die für zwei Dreiecke überprüfen, ob diese toleranzverletzend sind. Hierfür präsentieren wir verschiedene Ansätze für Dreiecks-Dreiecks Toleranztests und zeigen, dass spezielle Toleranztests deutlich performanter sind als bisher verwendete Abstandsberechnungen. Im Fokus unserer Arbeit steht dabei die Entwicklung eines neuartigen Toleranztests, welcher im Dualraum arbeitet. In all unseren Benchmarks zur Berechnung aller toleranzverletzenden Primitive beweist sich unser Ansatz im dualen Raum immer als der Performanteste.rnrnDer zweite Teil dieser Arbeit befasst sich mit Datenstrukturen und Algorithmen zur Echtzeitberechnung aller toleranzverletzenden Primitive zwischen zwei geometrischen Objekten. Wir entwickeln eine kombinierte Datenstruktur, die sich aus einer flachen hierarchischen Datenstruktur und mehreren Uniform Grids zusammensetzt. Um effiziente Laufzeiten zu gewährleisten ist es vor allem wichtig, den geforderten Sicherheitsabstand sinnvoll im Design der Datenstrukturen und der Anfragealgorithmen zu beachten. Wir präsentieren hierzu Lösungen, die die Menge der zu testenden Paare von Primitiven schnell bestimmen. Darüber hinaus entwickeln wir Strategien, wie Primitive als toleranzverletzend erkannt werden können, ohne einen aufwändigen Primitiv-Primitiv Toleranztest zu berechnen. In unseren Benchmarks zeigen wir, dass wir mit unseren Lösungen in der Lage sind, in Echtzeit alle toleranzverletzenden Primitive zwischen zwei komplexen geometrischen Objekten, bestehend aus jeweils vielen hunderttausend Primitiven, zu berechnen. rnrnIm dritten Teil präsentieren wir eine neuartige, speicheroptimierte Datenstruktur zur Verwaltung der Zellinhalte der zuvor verwendeten Uniform Grids. Wir bezeichnen diese Datenstruktur als Shrubs. Bisherige Ansätze zur Speicheroptimierung von Uniform Grids beziehen sich vor allem auf Hashing Methoden. Diese reduzieren aber nicht den Speicherverbrauch der Zellinhalte. In unserem Anwendungsfall haben benachbarte Zellen oft ähnliche Inhalte. Unser Ansatz ist in der Lage, den Speicherbedarf der Zellinhalte eines Uniform Grids, basierend auf den redundanten Zellinhalten, verlustlos auf ein fünftel der bisherigen Größe zu komprimieren und zur Laufzeit zu dekomprimieren.rnrnAbschießend zeigen wir, wie unsere Lösung zur Berechnung aller toleranzverletzenden Primitive Anwendung in der Praxis finden kann. Neben der reinen Abstandsanalyse zeigen wir Anwendungen für verschiedene Problemstellungen der Pfadplanung.