2 resultados para 1341

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Der Elektroosmotische Fluß (EOF) ist der Motor der Kapillarelektrochromatographie. Er ist abhängig von der Oberflächenladung, von dem Teilchendurchmesser der verwendeten Packungsmaterialien, von der Pufferkonzentration, von dem pH - Wert und von dem Anteil des organischen Lösemittels im Fließmittel. In dieser Arbeit wurde der Einfluß dieser Parameter untersucht. Das Zetapotential als Maß für die Ladungsdichte an der Oberfläche eignet sich zur Charakterisierung der Packungsmaterialien und der damit gepackten Kapillaren. Es wurden in dieser Arbeit _-Potentiale mehrerer chemisch modifizierter Kieselgele mit nativen Kieselgelen verglichen. Die pH-Abhängigkeit der _-Potentiale spiegelt sich im EOF wider.Chemisch modifizierte Kieselgele mit gemischtfunktionellen Gruppen oder Ionenaustauschergruppen zeigen ein großes Zeta – Potential ohne pH-Abhängigkeit. Wie experimentell gezeigt wurde, sind Kapillaren, die mit diesen Materialien gepackt wurden, nicht reproduzierbar in Bezug auf den EOF und die Effizienz der Trennung. Deswegen wurden in dieser Arbeit Additive zu dem Fließmittelgemisch gegeben, die die Ladung des Puffers erhöhen und damit den EOF beschleunigen sollen. Durch dynamisches Benetzen der Oberfläche, durch Micellenbildung und durch Addukte mit den Analyten können diese Additive die Selektivität der Trenung beeinflussen, wie am Beispiel mehrerer Testgemische gezeigt wurde, die Geschwindigkeit des EOF bleibt davon unberührt. Kapillaren, die mit porösen und unporösen Kieselgelen gepackt wurden, verhalten sich in der CEC gleich: bei niedrigen pH-Werten und niedrigen Pufferkonzentrationen werden die kleinsten Bodenhöhen und die größten EOF – Geschwindigkeiten gemessen. Das Minimum der H vs u Kurven liegt für CEC – Kapillaren mit porösen 3 µm - Materialien (Hypersil ODS) bei dem Zwei- bis Dreifachen (H ª 2 - 3 dp), mit unporösen 3 µm - Materialien (MICRA NPS ODS) bei dem Doppelten (H ª 2 dp) und mit unporösen 1,5 µm - Materialien (MICRA NPS ODS) bei dem Eineinhalbfachen (H ª 1,5 µm) des mittleren Teilchendurchmessers, d.h es ergibt sich für kleinere Teilchendurchmesser eine höhere Effizienz. Kapillaren mit unporösen Teilchen haben ein geringeres Totvolumen als mit porösen Teilchen gefüllte, deshalb scheint der EOF besonders schnell zu sein. Trennungen auf Kapillaren, die mit unporösen Teilchen gefüllt sind, erweisen sich als besonders schnell, da der geringe Kohlenstoffgehalt eine schnelle Einstellung des Verteilungsgleichgewichts bewirkt. Fließmittel mit einem hohen Anteil an polaren organischen Lösemitteln (Acetonitril bzw. Methanol) machen diesen Vorteil zunichte, die Analyten werden nicht getrennt.Aus mehreren kommerziell erwerbbaren Komponenten wurde ein Instrument aufgebaut, das sich als Kapillar Elektrophorese, als Kapillar Elektrochromatographie, als µ-HPLC und als spannungsunterstützte µ-HPLC verwenden läßt. Dieses Gerät eignet sich besonders zur Kombination der CEC mit der µ-HPLC, die man vielleicht spannungsunterstützte µ-HPLC nennen darf. Mit diesem Gerät konnte der Einfluß des elektrischen Feldes auf den EOF gemessen werden, da mit wesentlich kürzeren gepackten Kapillaren gearbeitet werden kann. Der EOF, wie er aus der CEC bekannt ist, kann in der spannungsunterstützten µ-HPLC neben dem hydrodynamischen Fluß nachgewiesen werden. Beide Effekte arbeiten neben einander, damit lassen sich hydrodynamisch betriebene Anlagen mit elektrokinetisch betriebenen koppeln. Das scheint auf den ersten Blick ein Schritt zurück zu sein, bietet jedoch ungeahnte Möglichkeiten für die Zukunft, da die geringen Flüsse, die man zum Betreiben dieser Anlagen braucht, mit modernen Spritzenpumpen leicht handhabbar sind. Die Vorteile dieses Systems zeigen sich in dem geringen Fließmittelverbrauch, dem geringen Probenmengenbedarf, der hohen Selektivität und dem universellen Einsatz.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Im Rahmen der Arbeit wurde ein neuartiges Aerosol-Ionenfallen-Massenspektrometer (AIMS) aufgebaut und umfassend charakterisiert. Mit dem AIMS kann die chemische Zusammensetzung der verdampfbaren Komponente (bei etwa 600 °C) von Aerosolpartikeln quantitativ und on-line bestimmt werden. Die Durchmesser der Teilchen, die analysiert werden können, liegen zwischen etwa 30 und 500 nm. Der experimentelle Aufbau greift auf ein bereits gut charakterisiertes Einlasssystem des Aerodyne Aerosol-Massenspektrometers (AMS) zurück, das einen Partikeleinlass, bestehend aus einer kritischen Düse und einer aerodynamischen Linse, einen Verdampfer für die Aerosolteilchen und eine Elektronenstoß-Ionenquelle enthält. Das kommerzielle AMS verwendet entweder ein lineares Quadrupol-Massenfilter (Q-AMS) oder ein Flugzeit-Massenspektrometer (ToF-AMS). Im AIMS hingegen wird eine dreidimensionale Ionenfalle als Massenanalysator eingesetzt. Dadurch eröffnen sich unter anderem Möglichkeiten zur Durchführung von MSn-Studien und Ionen/Molekül-Reaktionsstudien. Das Massenspektrometer und wichtige Teile der Steuerungselektronik wurden am Max-Planck-Institut für Chemie in Mainz entworfen und hergestellt. Das AIMS wird von einem PC und einer Software, die in der Programmiersprache LabVIEW verfasst ist, gesteuert. Aufgrund seiner Kompaktheit ist das Instrument auch für den Feldeinsatz geeignet. Mit der Software Simion 7.0 wurden umfangreiche Simulationsstudien durchgeführt. Diese Studien beinhalten Simulationen zur Ermittlung der optimalen Spannungseinstellungen für den Ionentransfer von der Ionenquelle in die Ionenfalle und eine Abschätzung der Sammeleffizienz der Ionenfalle, die gut mit einem gemessenen Wert übereinstimmt. Charakterisierungsstudien zeigen einige instrumentelle Merkmale des AIMS auf. Es wurde beispielsweise ein Massenauflösungsvermögen von 807 für m/z 121 gefunden, wenn eine Analyserate von 1780 amu/s verwendet wird. Wird die Analyserate verringert, dann lässt sich das Massenauflösungsvermögen noch erheblich steigern. Bei m/z 43 kann dann ein Wert von > 1500 erzielt werden, wodurch sich Ionenfragmente wie C2H3O+ (m/z 43.0184) und C3H7+ (m/z 43.0548) voneinander trennen lassen. Der Massenbereich des AIMS lässt sich durch resonante Anregung erweitern; dies wurde bis zu einer Masse von 1000 amu getestet. Kalibrationsmessungen mit laborgenerierten Partikeln zeigen eine hervorragende Linearität zwischen gemessenen Signalstärken und erzeugten Aerosol-Massenkonzentrationen. Diese Studien belegen im Zusammenhang mit den gefundenen Nachweisgrenzen von Nitrat (0.16 μg/m³) und Sulfat (0.65 μg/m³) aus Aerosolpartikeln, dass das AIMS für quantitative Messungen von atmosphärischem Aerosol geeignet ist. Ein Vergleich zwischen dem AIMS und dem Q-AMS für Nitrat in städtischem Aerosol zeigt eine gute Übereinstimmung der gefundenen Messwerte. Für laborgenerierte Polystyren-Latexpartikel wurde eine MS/MS-Studie unter der Anwendung von collision induced dissociation (CID) durchgeführt. Das Verhältnis von Fragmentionen zu Analytionen wurde zu einem Wert von > 60% bestimmt. In der Zukunft können ähnliche MS/MS-Studien auch für atmosphärische Aerosolpartikel angewandt werden, wodurch sich neue Perspektiven für die Speziation von Aerosolbestandteilen eröffnen. Dann sollen vor allem Kondensationsprozesse, das heißt die Bildung von sekundärem Aerosol, detailliert untersucht werden.