3 resultados para chlorite

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis reports on a research into the progressive development of fibrous aggregates, e.g. calcite, quartz and mica crystals in veins and strain fringes. The study is based on microstructural analysis of natural examples and on computer experiments. Investigation of fibrous looking elongate crystals in striped bedding-veins from the Orobic Alps, Italy indicate that these crystals do not track the opening trajectory of the veins but are oriented at an angle of up to 80° to the opening direction. Microstructural analysis of quartz, calcite and chlorite fibres in antitaxial strain fringes indicate that most strain fringes contain complex intergrowth of tracking (displacement-controlled) and non-tracking (face-controlled) fibres. To explain these growth features the computer program

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P-T conditions, paragenetic studies and the relation between mineral growth, deformation and - when possible- isograd minerals have been used to describe the type of metamorphism involved within lower units of the southern Menderes Massif of the Anatolide Belt in western Turkey. The study areas mainly consist of Proterozoic orthogneiss and surrounding schists of presumed Paleozoic age. Both units are seen as nappes in the southern study area, the Ãine and the Selimiye nappe, on the whole corresponding to Proterozoic orthogneiss and surrounding schists, respectively. The Ãine and Selimiye nappes are part of a complex geological structure within the core series of the Menderes Massif. Their emplacement under lower greenschist facies conditions, would result from closure of the northern Neo-Thethys branch during the Eocene. These two nappes are separated by a major tectonic structure, the Selimiye shear zone, which records top-to-the-S shearing under greenschist facies conditions. Amphibolite to upper amphibolite facies metamorphism is widely developed within the metasedimentary rocks of the Ãine nappe whereas no metamorphism exceeding lower amphibolite facies has been observed in the Selimiye nappe. In the southern margin of the Ãine Massif, around Selimiye and Millas villages, detailed sampling has been undertaken in order to map mineral isograds within the Selimiye nappe and to specify P-T conditions in this area. The data collected in this area reveals a global prograde normal erosion field gradient from south to north and toward the orthogneiss. The mineralogical parageneses and P-T estimates are correlated with Barrovian-type metamorphism. A jump of P-T conditions across the Selimiye shear zone has been identified and estimated c. 2 kbar and 100 °C which evidences the presence of amphibolite facies metasedimentary rocks near the orthogneiss. Metasedimentary rocks from the overlying Selimiye nappe have maximum P-T conditions of c. 4-5 kbar and c. 525 °C near the base of the nappe. Metasedimentary rocks from the Ãine nappe underneath the Selimiye shear zone record maximum P-T conditions of about 7 kbar and >550 °C. Kinematic indicators in both nappes consistently show a top-S shear sense. Metamorphic grade in the Selimiye nappe decreases structurally upwards as indicated by mineral isograds defining the garnet-chlorite zone at the base, the chloritoid-biotite zone and the biotite-chlorite zone at the top of the nappe. The mineral isograds in the Selimiye nappe run parallel to the regional SR foliation. 40Ar/39Ar mica ages indicate an Eocene age of metamorphism in the Selimiye nappe and underneath the Ãine nappe in this area. Metasedimentary rocks of the Ãine nappe 20-30 km north of the Selimiye shear zone record maximum P-T conditions of 8-11 kbar and 600-650 °C. Kinematic indicators show mainly top-N shear sense associated with prograde amphibolite facies metamorphism. An age of about 550 Ma could be indicated for amphibolite facies metamorphism and associated top-N shear in the orthogneiss and metasedimentary rocks of the Ãine nappe. However, there is no evidence for polymetamorphism in the 6 metasedimentary rocks of the Ãine nappe, making tectonic interpretations about late Neoproterozoic to Cambrian and Tertiary metamorphic events speculative. In the western margin of the Ãine Massif metamorphic mineral parageneses and pressureâ temperature conditions lead to similar conclusion regarding the erosion field gradient, prograde normal toward the orthogneiss. The contact between orthogneiss and surrounding metasedimentary rocks is mylonitic and syn-metamorphism. P-T estimates are those already observed within the Selimiye nappe and correlated with lower amphibolite facies parageneses. Finally additional data in the eastern part and a general paragenetic study within the Menderes Massif lower units, the Ãine and the Selimiye nappes, strongly suggest a single Barrovian-type metamorphism predating Eocene emplacement of the high pressureâlow temperature Lycean and Cycladic blueschist nappes. Metamorphic mineral parageneses and pressureâtemperature conditions do not support the recently proposed model of high pressureâlow temperature metamorphic overprinting, which implies burial of the lower units of the Menderes Massif up to depth of 30 km, as a result of closure of the Neo-Tethys. According to the geochronological problem outlined during this thesis, there are two possible schemes: either Barrovian-type metamorphism is Proterozoic in age and part of the sediments from Selimiye nappe (lower amphibolite facies) has to be proterozoic of age too, or Barrovian-type metamorphism in Eocene of age. In the first case the structure observed now in the core series would correspond to simple exhumation of Proterozoic basement. In the latter case a possible correlation with closure of Neo-Tethys (sensu stricto, southern branch) is envisaged.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis foliation boudinage and related structures have been studied based on field observations and numerical modeling. Foliation boudinage occurs in foliated rocks independent of lithology contrast. The developing structures are called â˜Foliation boudinage structures (FBSs)â and show evidence for both ductile and brittle deformation. They are recognized in rocks by perturbations in monotonous foliation adjacent to a central discontinuity, mostly filled with vein material. Foliation boudinage structures have been studied in the Ãine Massif in SW-Turkey and the Furka Pass-Urseren Zone in central Switzerland. Four common types have been distinguished in the field, named after vein geometries in their boudin necks in sections normal to the boudin axis: lozenge-, crescent-, X- and double crescent- type FBSs. Lozengetype FBSs are symmetric and characterized by lozenge-shaped veins in their boudin neck with two cusps facing opposite sides. A symmetrical pair of flanking folds occurs on the two sides of the vein. Crescent-type FBSs are asymmetric with a single smoothly curved vein in the boudin neck, with vein contacts facing to one side. X- and double crescent- type FBSs are asymmetric. The geometry of the neck veins resembles that of cuspate-lobate structures. The geometry of flanking structures is related to the shape of the veins. The veins are mostly filled with massive quartz in large single crystals, commonly associated with tourmaline, feldspar and biotite and in some cases with chlorite. The dominance of large facetted single quartz crystals and spherulitic chlorite in the veins suggest that the minerals grew into open fluidfilled space. FLAC experiments show that fracture propagation during ductile deformation strongly influences the geometry of developing veins. The cusps of the veins are better developed in the case of propagating fractures. The shape of the boudin neck veins in foliation boudinage depends on the initial orientation and shape of the fracture, the propagation behaviour of the fracture, the geometry of bulk flow, and the stage at which mineral filling takes place. A two dimensional discrete element model was used to study the progressive development of foliation boudinage structures and the behavior of visco-elastic material deformed under pure shear conditions. Discrete elements are defined by particles that are connected by visco-elastic springs. Springs can break. A number of simulations was Abstract vii performed to investigate the effect of material properties (Youngâs modulus, viscosity and breaking strength) and anisotropy on the developing structures. The models show the development of boudinage in single layers, multilayers and in anisotropic materials with random mica distribution. During progressive deformation different types of fractures develop from mode I, mode II to the combination of both. Voids develop along extension fractures, at intersections of conjugate shear fractures and in small pull-apart structures along shear fractures. These patterns look similar to the natural examples. Fractures are more localized in the models where the elastic constants are low and the competence contrast is high between the layers. They propagate through layers where the constants are high and the competence contrast is relatively low. Flow localize around these fractures and voids. The patterns similar to symmetric boudinage structures and extensional neck veins (e.g. lozenge type) more commonly develop in the models with lower elastic constants and anisotropy. The patterns similar to asymmetric foliation boudinage structures (e.g. X-type) develop associated with shear fractures in the models where elastic constants and anisotropy of the materials are relatively high. In these models boudin neck veins form commonly at pull-aparts along the shear fractures and at the intersection of fractures.