4 resultados para [JEL:C79] Mathematical and Quantitative Methods - Game Theory and Bargaining Theory - Other

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present dissertation we consider Feynman integrals in the framework of dimensional regularization. As all such integrals can be expressed in terms of scalar integrals, we focus on this latter kind of integrals in their Feynman parametric representation and study their mathematical properties, partially applying graph theory, algebraic geometry and number theory. The three main topics are the graph theoretic properties of the Symanzik polynomials, the termination of the sector decomposition algorithm of Binoth and Heinrich and the arithmetic nature of the Laurent coefficients of Feynman integrals.rnrnThe integrand of an arbitrary dimensionally regularised, scalar Feynman integral can be expressed in terms of the two well-known Symanzik polynomials. We give a detailed review on the graph theoretic properties of these polynomials. Due to the matrix-tree-theorem the first of these polynomials can be constructed from the determinant of a minor of the generic Laplacian matrix of a graph. By use of a generalization of this theorem, the all-minors-matrix-tree theorem, we derive a new relation which furthermore relates the second Symanzik polynomial to the Laplacian matrix of a graph.rnrnStarting from the Feynman parametric parameterization, the sector decomposition algorithm of Binoth and Heinrich serves for the numerical evaluation of the Laurent coefficients of an arbitrary Feynman integral in the Euclidean momentum region. This widely used algorithm contains an iterated step, consisting of an appropriate decomposition of the domain of integration and the deformation of the resulting pieces. This procedure leads to a disentanglement of the overlapping singularities of the integral. By giving a counter-example we exhibit the problem, that this iterative step of the algorithm does not terminate for every possible case. We solve this problem by presenting an appropriate extension of the algorithm, which is guaranteed to terminate. This is achieved by mapping the iterative step to an abstract combinatorial problem, known as Hironaka's polyhedra game. We present a publicly available implementation of the improved algorithm. Furthermore we explain the relationship of the sector decomposition method with the resolution of singularities of a variety, given by a sequence of blow-ups, in algebraic geometry.rnrnMotivated by the connection between Feynman integrals and topics of algebraic geometry we consider the set of periods as defined by Kontsevich and Zagier. This special set of numbers contains the set of multiple zeta values and certain values of polylogarithms, which in turn are known to be present in results for Laurent coefficients of certain dimensionally regularized Feynman integrals. By use of the extended sector decomposition algorithm we prove a theorem which implies, that the Laurent coefficients of an arbitrary Feynman integral are periods if the masses and kinematical invariants take values in the Euclidean momentum region. The statement is formulated for an even more general class of integrals, allowing for an arbitrary number of polynomials in the integrand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Arbeit beschäftigt sich mit ein- und zweikomponentigen, geladenen Kolloidsystemen, die in vollentsalzten wässrigen und organischen Dispersionen kristalline Strukturen ausbilden. Im ersten Teil der Arbeit wird die Wechselwirkung der Kolloide mit verschiedenen Methoden charakterisiert. Dabei zeigten sich quantitative Übereinstimmungen zwischen den Resultaten aus Zellenmodellrechnungen und aus elektrokinetischen Messungen einerseits und Messungen des Phasenverhaltens und der Elastizität andererseits. Diese nunmehr gut gesicherten Diskrepanzen und Korrelationen bedürfen des theoretischen Verständnisses. Im zweiten Teil der Arbeit wurde das Erstarrungsverhalten kolloidaler Scherschmelzen in den kristallinen Zustand mit (zeitaufgelöster) statischer Lichtstreuung und mikroskopischen Methoden untersucht. Dies erlaubte zunächst die kritische Überprüfung klassischer Modelle zur Kristallisationskinetik (Wilson- Frenkel- Gesetz, klassische Nukleationstheorie, Kolmogorov- Johnson- Mehl- Avrami (KJMA)- Modell). Es zeigte sich, dass diese Modelle gut geeignet sind die Verfestigung auch geladener kolloidaler Schmelzen zu beschreiben, wenn die diffusive Einteilchendynamik korrekt becksichtigt wird. Erstmals wurden Oberflächenspannungen zwischen Kristallkeim und Schmelze für geladene Systeme bestimmt, die im Gegensatz zu Hartkugel- Systemen eine lineare Zunahme mit der Partikelkonzentration aufweisen. Der Methodenpark und die Auswerteverfahren wurden sodann auf binäre kolloidale Mischungen übertragen. Entsprechend den Einzelkomponenten kristallisieren alle Mischungen in einer kubischen Struktur. Leitfähigkeitsmessungen und Elastizität stehen meist im Einklang mit der Nukleation zufallsgeordneter Substitutionskristalle. Für mehrere Proben mit unterschiedlichen Größenverhältnissen wurde mit statischer Lichtstreuung der Einfluss der Komposition und der Partikelkonzentration auf das Nukleationsverhalten untersucht. Im Allgemeinen wurde das Nukleationsszenario einkomponentiger Systeme mit einigen unerwarteten, quantitativen Unterschieden reproduziert. Für eine Probe, die eine Kompositionsordnung andeutet, wurden interessante Korrelationen zwischen der Nukleationskinetik und den Eigenschaften des resultierenden Festkörpers gefunden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Bor-Neuroneneinfang-Therapie (engl.: Boron Neutron Capture Therapy, BNCT) ist eine indirekte Strahlentherapie, welche durch die gezielte Freisetzung von dicht ionisierender Strahlung Tumorzellen zerstört. Die freigesetzten Ionen sind Spaltfragmente einer Kernreaktion, bei welcher das Isotop 10B ein niederenergetisches (thermisches) Neutron einfängt. Das 10B wird durch ein spezielles Borpräparat in den Tumorzellen angereichert, welches selbst nicht radioaktiv ist. rnAn der Johannes Gutenberg-Universität Mainz wurde die Forschung für die Anwendung eines klinischen Behandlungsprotokolls durch zwei Heilversuche bei Patienten mit kolorektalen Lebermetastasen an der Universität Pavia, Italien, angeregt, bei denen die Leber außerhalb des Körpers in einem Forschungsreaktor bestrahlt wurde. Als erster Schritt wurde in Kooperation verschiedener universitärer Institute eine klinische Studie zur Bestimmung klinisch relevanter Parameter wie der Borverteilung in verschiedenen Geweben und dem pharmakokinetischen Aufnahmeverhalten des Borpräparates initiiert.rnDie Borkonzentration in den Gewebeproben wurde hinsichtlich ihrer räumlichen Verteilung in verschiedenen Zellarealen bestimmt, um mehr über das Aufnahmeverhalten der Zellen für das BPA im Hinblick auf ihre biologischen Charakteristika zu erfahren. Die Borbestimung wurde per Quantitative Neutron Capture Radiography, Prompt Gamma Activation Analysis und Inductively Coupled Plasma Mass Spectroscopy parallel zur histologischen Analyse des Gewebes durchgeführt. Es war möglich zu zeigen, dass in Proben aus Tumorgewebe und aus tumorfreiem Gewebe mit unterschiedlichen morphologischen Eigenschaften eine sehr heterogene Borverteilung vorliegt. Die Ergebnisse der Blutproben werden für die Erstellung eines pharmakokinetischen Modells verwendet und sind in Übereinstimmung mit existierenden pharmakokinetische Modellen. Zusätzlich wurden die Methoden zur Borbestimmung über speziell hergestellte Referenzstandards untereinander verglichen. Dabei wurde eine gute Übereinstimmung der Ergebnisse festgestellt, ferner wurde für alle biologischen Proben Standardanalyseprotokolle erstellt.rnDie bisher erhaltenen Ergebnisse der klinischen Studie sind vielversprechend, lassen aber noch keine endgültigen Schlussfolgerungen hinsichtlich der Wirksamkeit von BNCT für maligne Lebererkrankungen zu. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der Rational-Choice-Ansatz (RCA) hat in den letzten Jahrzehnten eine weite Ver-rnbreitung in vielen sozialwissenschaftlichen Disziplinen erfahren. Insbesondere in den letzten zwei Jahrzehnten gab es wiederholte Bemühungen, den RCA auchrnauf geschichtswissenschaftliche Fragestellungen und Themen anzuwenden. Ein interssanter Ansatz dafür ist eine integrative Methodik, die unter der Bezeichnung „Analytic Narrative“ bekannt wurde. Damit wird versucht, die klassische narrative Form der Erklärung historischer Phänomene mit spieltheoretischen Modellierungen zu verbinden. Inspiriert durch diesen Ansatz geht die vorliegende Untersuchung der Frage nach, in welcher Form und unter welchen Umständen der RCA als analytische Grundlage für historische Themenfelder und Fragestellungen geeignet sein mag. Dies wird nicht nur theoretisch, sondern an einem historischen Beispiel untersucht. Konkreter Betrachtungsgegenstand der Arbeit ist der Vierte Kreuzzug. Vor über 800 Jahren endete dieser mit der Eroberung und Plünderung Konstantinopels sowie der Zerschlagung des Byzantinischen Reichs. Seit mehr als 150 Jahren streiten Historiker über die Ursachen für diese Ereignisse. Die theoretischenrnGrundpositionen, die innerhalb dieser Debatte durch einzelne Historiker einge-rnnommen wurden, dienen als Ausgangspunkt für die hier verfolgte Untersuchung.rnEs wird gezeigt, dass die Daten, die uns über den Vierten Kreuzzug vorliegen,rndie Möglichkeit eröffnen, verschiedene auf dem RCA basierende Analyseverfah-rnren zur Anwendung zu bringen. Das zentrale Ziel der Analyse besteht darin, ausrnden vorhandenen Quellen neue Einsichten in die strategischen Handlungsoptionen der für den Verlauf des Kreuzzugs relevanten Akteure zu generieren undrnüberdies ein Höchstmaß an Überprüfbarkeit zu gewährleisten.