32 resultados para avenaciolide analogues
Resumo:
Chapter 1 of this thesis comprises a review of polyether polyamines, i.e., combinations of polyether scaffolds with polymers bearing multiple amino moieties. Focus is laid on controlled or living polymerization methods. Furthermore, fields in which the combination of cationic, complexing, and pH-sensitive properties of the polyamines and biocompatibility and water-solubility of polyethers promise enormous potential are presented. Applications include stimuli-responsive polymers with a lower critical solution temperature (LCST) and/or the ability to gel, preparation of shell cross-linked (SCL) micelles, gene transfection, and surface functionalization.rnIn Chapter 2, multiaminofunctional polyethers relying on the class of glycidyl amine comonomers for anionic ring-opening polymerization (AROP) are presented. In Chapter 2.1, N,N-diethyl glycidyl amine (DEGA) is introduced for copolymerization with ethylene oxide (EO). Copolymer microstructure is assessed using online 1H NMR kinetics, 13C NMR triad sequence analysis, and differential scanning calorimetry (DSC). The concurrent copolymerization of EO and DEGA is found to result in macromolecules with a gradient structure. The LCSTs of the resulting copolymers can be tailored by adjusting DEGA fraction or pH value of the environment. Quaternization of the amino moieties by methylation results in polyelectrolytes. Block copolymers are used for PEGylated gold nanoparticle formation. Chapter 2.2 deals with a glycidyl amine monomer with a removable protecting group at the amino moiety, for liberation of primary amines at the polyether backbone, which is N,N-diallyl glycidyl amine (DAGA). Its allyl groups are able to withstand the harsh basic conditions of AROP, but can be cleaved homogeneously after polymerization. Gradient as well as block copolymers poly(ethylene glycol)-PDAGA (PEG-PDAGA) are obtained. They are analyzed regarding their microstructure, LCST behavior, and cleavage of the protecting groups. rnChapter 3 describes applications of multi(amino)functional polyethers for functionalization of inorganic surfaces. In Chapter 3.1, they are combined with an acetal-protected catechol initiator, leading to well-defined PEG and heteromultifunctional PEG analogues. After deprotection, multifunctional PEG ligands capable of attaching to a variety of metal oxide surfaces are obtained. In a cooperative project with the Department of Inorganic and Analytical Chemistry, JGU Mainz, their potential is demonstrated on MnO nanoparticles, which are promising candidates as T1 contrast agents in magnetic resonance imaging. The MnO nanoparticles are solubilized in aqueous solution upon ligand exchange. In Chapter 3.2, a concept for passivation and functionalization of glass surfaces towards gold nanorods is developed. Quaternized mPEG-b-PqDEGA diblock copolymers are attached to negatively charged glass surfaces via the cationic PqDEGA blocks. The PEG blocks are able to suppress gold nanorod adsorption on the glass in the flow cell, analyzed by dark field microscopy.rnChapter 4 highlights a straightforward approach to poly(ethylene glycol) macrocycles. Starting from commercially available bishydroxy-PEG, cyclic polymers are available by perallylation and ring-closing metathesis in presence of Grubbs’ catalyst. Purification of cyclic PEG is carried out using α-cyclodextrin. This cyclic sugar derivative forms inclusion complexes with remaining unreacted linear PEG in aqueous solution. Simple filtration leads to pure macrocycles, as evidenced by SEC and MALDI-ToF mass spectrometry. Cyclic polymers from biocompatible precursors are interesting materials regarding their increased blood circulation time compared to their linear counterparts.rnIn the Appendix, A.1, a study of the temperature-dependent water-solubility of polyether copolymers is presented. Macroscopic cloud points, determined by turbidimetry, are compared with microscopic aggregation phenomena, monitored by continuous wave electron paramagnetic resonance (CW EPR) spectroscopy in presence of the amphiphilic spin probe and model drug (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). These thermoresponsive polymers are promising candidates for molecular transport applications. The same techniques are applied in Chapter A.2 to explore the pH-dependence of the cloud points of PEG-PDEGA copolymers in further detail. It is shown that the introduction of amino moieties at the PEG backbone allows for precise manipulation of complex phase transition modes. In Chapter A.3, multi-hydroxyfunctional polysilanes are presented. They are obtained via copolymerization of the acetal-protected dichloro(isopropylidene glyceryl propyl ether)methylsilane monomer. The hydroxyl groups are liberated through acidic work-up, yielding versatile access to new multifunctional polysilanes.
Resumo:
The central objective of this work was to generate weakly coordinating cations of unprecedented molecular size providing an inherently stable hydrophobic shell around a central charge. It was hypothesized that divergent dendritic growth by means of thermal [4+2] Diels-Alder cycloaddition might represent a feasible synthetic method to circumvent steric constraints and enable a drastic increase in cation size.rnThis initial proposition could be verified: applying the divergent dendrimer synthesis to an ethynyl-functionalized tetraphenylphosphonium derivative afforded monodisperse cations with precisely nanoscopic dimensions for the first time. Furthermore, the versatile nature of the applied cascade reactions enabled a throughout flexible design and structural tuning of the desired target cations. The specific surface functionalization as well as the implementation of triazolyl-moieties within the dendrimer scaffold could be addressed by sophisticated variation of the employed building block units (see chapter 3). rnDue to the steric screening provided by their large, hydrophobic and shape-persistent polyphenylene shells, rigidly dendronized cations proved more weakly coordinating compared to their non-dendronized analogues. This hypothesis has been experimentally confirmed by means of dielectric spectroscopy (see chapter 4). It was demonstrated for a series of dendronized borate salts that the degree of ion dissociation increased with the size of the cations. The utilization of the very large phosphonium cations developed within this work almost achieved to separate the charge carriers about the Bjerrum length in solvents of low polarity, which was reflected by approaching near quantitative ion dissociation even at room temperature. In addition to effect the electrolyte behavior in solution, the steric enlargement of ions could be visualized by means of several crystal structure analyses. Thus an insight into lattice packing under the effect of extraordinary large cations could be gathered. rnAn essential theme of this work focused on the application of benzylphosphonium salts in the classical Wittig reaction, where the concept of dendronization served as synthetic means to introduce an exceptionally large polyphenylene substituent at the -position. The straightforward influence of this unprecedented bulky group on the Wittig stereochemistry was investigated by NMR-analysis of the resulting alkenes. Based on the obtained data a valuable explanation for the origin of the observed selectivity was brought in line with the up-to-date operating [2+2] cycloaddition mechanism. Furthermore, a reliable synthesis protocol for unsymmetrically substituted polyphenylene alkenes and stilbenes was established by the design of custom-built polyphenylene precursors (see chapter 5).rnFinally, fundamental experiments to functionalize a polymer chain with sterically shielded ionic groups either in the pending or internal position were outlined within this work. Thus, inherently hydrophobic polysalts shall be formed so that future research can invesigate their physical properties with regard to counter ion condensation and charge carrier mobility.rnIn summary, this work demonstrates how the principles of dendrimer chemistry can be applied to modify and specifically tailor the properties of salts. The numerously synthesized dendrimer-ions shown herein represent a versatile interface between classic organic and inorganic electrolytes, and defined macromolecular structures in the nanometer-scale. Furthermore the particular value of polyphenylene dendrimers in terms of a broad applicability was illustrated. This work accomplished in an interdisciplinary manner to give answer to various questions such as structural modification of ions, the resulting influence on the electrolyte behavior, as well as the stereochemical control of organic syntheses via polyphenylene phosphonium salts. rn