18 resultados para poly(glutamic acid)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An einer Vielzahl biogener Polyelektrolyte, wie z.B. den Nukleinsäuren DNA und RNA sowie Proteinen, ist die Ausbildung von Strukturhierarchien durch Selbstorganisation von Strukturelementen zu beobachten. Dabei wird das Strukturbildungsverhalten durch eine Kopplung von Wechselwirkungen auf verschiedenen Längenskalen, den kurzreichweitigen ausgeschlossenen Volumen und den langreichweitigen elektrostatischen Wechselwirkungen (Coulomb-Wechselwirkungen), die wiederum durch eine Vielzahl mikroskopische Parameter (z.B. Konformation) beeinflusst werden, bestimmt. Durch diese Komplexität ist es nicht möglich, den für die Strukturbildung hochgeladener Systeme bedeutsamen Beitrag der elektrostatischen Wechselwirkungen isoliert zu betrachten. Aus diesem Grund werden zur Aufklärung von Wechselwirkungs- und Strukturbildungsmechanismen vereinfachte Modell-Systeme herangezogen. Eine Möglichkeit besteht in der Verwendung synthetischer, kettensteifer Polyelektrolyte. Im Rahmen dieser Arbeit wurde das Aggregationsverhalten wässriger Lösungen dodecylsubstituierter Poly(para-phenylen)sulfonate (PPPS) sowie die Beeinflussung der Strukturbildung durch verschiedene Parameter charakterisiert. Als Einflussparameter wurden einerseits die Gegenion-Spezies und andererseits die Temperatur- und Konzentrations-Abhängigkeit untersucht. Hierzu wurden wässrige Lösungen der freien Säuren der PPPS mit Molekulargewichten zwischen MW = 18 kg/mol bis 58 kg/mol mittels Licht-, Röntgen- und Neutronenstreuung sowie durch Licht-, Polarisations-, Transmissionselektronen- und Rasterkraftmikroskopie in einem Konzentrationsbereich von 0,0008 < c < 1,1 g/L untersucht.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: In this work, proton conducting copolymers, polymer blends and composites containing phosphonic acid groups have been prepared. Proton conduction mechanisms in these materials are discussed respectively in both, the anhydrous and humidified state. Atom transfer radical copolymerization (ATRCP) of diisopropyl-p-vinylbenzyl phosphonate (DIPVBP) and 4-vinyl pyridine (4VP) is studied for the first time in this work. The kinetic parameters are obtained by using the 1H-NMR online technique. Proton conduction in poly(vinylbenzyl phosphonic acid) (PVBPA) homopolymer and its statistical copolymers with 4-vinyl pyridine (poly(VBPA-stat-4VP)s) are comprehensively studied in both, the “dry” and “wet” state. Effects of temperature, water content and polymer composition on proton conductivities are studied and proton transport mechanisms under various conditions are discussed. The proton conductivity of the polymers is in the range of 10-6-10-8 S/cm in nominally dry state at 150 oC. However, proton conductivity of the polymers increases rapidly with water content in the polymers which can reach 10-2 S/cm at the water uptake of 25% in the polymers. The highest proton conductivity obtained from the polymers can even reach 0.3 S/cm which was measured at 85oC with 80% relative humidity in the measuring atmosphere. Poly(4-vinyl pyridine) was grafted from the surface of SiO2 nanoparticles using ATRP in this work for the first time. Following this approach, silica nanoparticles with a shell of polymeric layer are used as basic particles in a polymeric acidic matrix. The proton conductivities of the composites are studied under both, humidified and dry conditions. In dry state, the conductivity of the composites is in the range of 10-10~10-4 S/cm at 150 oC. While in humid state, the composites show much higher proton conductivity. The highest proton conductivity obtained with the composites is 0.5 S/cm measured at 85oC with 80% relative humidity in the measuring atmosphere. The miscibility of poly (vinyl phosphonic acid) and PEO is studied for the first time in this work and a phase diagram is plotted based on a DSC study and optical microscopy. With this knowledge, homogeneous PVPA/PEO mixtures are prepared as proton-conducting polymer blends. The mobility of phosphonic acid groups and PEO in the blends is determined by 1H-MAS-NMR in temperature dependent measurements. The effect of composition and the role of PEO on proton conduction are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die Bioverkapselung ist eine faszinierende Methode, um biologische Materialien einschließlich Zellen in Siliziumdioxid, Metalloxiden oder hybriden Sol-Gel-Polymeren zu immobilisieren. Bisher wurde nur die Sol-Gel-Vorläufertechnologie genutzt, um Bakterien- oder Hefezellen in Siliziumdioxid zu immobilisieren. Hierfür wurden verschiedene Reagenzien als wässrige Vorläufer getestet, um poly(Silicate) auf Biomolekülen (Bhatia et al., 2000) oder Zellen (Liu und Chen 1999; Coradin und Livage, 2007) zu bilden. Einer der erfolgreichsten bisherigen Methoden verwendet eine Mischung aus Silicaten und kolloidalem Silica. Diese initialen Vorläufer werden durch die Zugabe von Salzsäure neutralisiert, was die Gelbildung fortschreiten lässt und die Verkapselung von Bakterien in einem Silica-Netzwerk zur Folge hat (Nassif et al., 2003). Mit der Entdeckung von Silicatein, einem Enzym, das aus Demospongien isoliert wurde und die Bildung von poly(Silicat) katalysiert, wurde es möglich, poly(Silicat) unter physiologischen Bedingungen zu synthetisieren. Silicatein wurde rekombinant in E. coli hergestellt und ist in der Lage, bei Raumtemperatur, neutralem pH-Wert und in wässrigen Puffersystemen aus Siliziumalkoxiden poly(Silicat) zu bilden (Krasko et al., 2000; Müller et al., 2007b; Zhou et al., 1999). In vivo katalysiert Silicatein die Synthese der Silicathülle der Schwamm-Spiculae (Skelettelemente; Müller et al., 2005b; Müller et al., 2007a; Müller et al., 2007b; Schröder et al., 2007a). Dieses Biosilica wurde in Form von Silica-Nanospheren mit Durchmessern zwischen 100 nm und 250 nm organisiert vorgefunden (Pisera 2003; Tahir et al., 2005). Mit dieser Arbeit konnte gezeigt werden, dass Escherichia coli erfolgreich mit dem Silicatein-Gen transformiert werden kann. Das Level der Proteinexpression kann in Anwesenheit von Isopropyl-β-D-thiogalaktopyranosid (IPTG) effizient erhöht werden, indem man die Bakterienzellen gleichzeitig mit Kieselsäure inkubiert. Dieser Effekt konnte sowohl auf Ebene der Synthese des rekombinanten Proteins durch Western Blot als auch durch Immunfluoreszenzmikroskopie nachgewiesen werden. Das heterolog produzierte Silicatein besitzt enzymatische Aktivität und kann die Polymerisation von Kieselsäure katalysieren. Dies konnte sowohl durch Färbung mit Rhodamin123, als auch durch Reaktion der nicht polymerisierten, freien Kieselsäure mit dem ß-Silicomolybdato-Farbsystem (Silicomolybdänblau) nachgewiesen werden. Elektronenmikroskopische Untersuchungen zeigten, dass nur die silicateinexprimierenden Bakterien während des Wachstums in Anwesenheit von Kieselsäure eine viskose Hülle um Zelle herum bilden. Ebenfalls konnte gezeigt werden, dass Silicatein-α aus Suberites domuncula nach Transformation in E. coli an die Zelloberfläche dieser Zellen transportiert wurde und dort seine enzymatische Funktion beibehielt. Die Silicathülle wurde mittels Raster-Elektronenmikroskopie (REM) analysiert. Die Bakterien, die Silicatein exprimierten und poly(Silicat) an ihrer Oberfläche synthetisierten, zeigten die gleichen Wachstumsraten wie die Bakterien, die das Gen nicht enthielten. Schlussfolgernd lässt sich sagen, dass die silicateinvermittelte Verkapselung von Bakterien mit poly(Silicat) die Bandbreite der Anwendung von Bakterien für die Produktion von rekombinanten Proteinen verbessern, erweitern und optimieren könnte.