16 resultados para Toll Brothers
Resumo:
The incorporation of modified nucleotides into ribonucleic acids (RNAs) is important for their structure and proper function. These modifications are inserted by distinct catalytic macromolecules one of them being Dnmt2. It methylates the Cytidine (C) at position 38 in tRNA to 5-methylcytidine (m5C). Dnmt2 has been a paradigm in this respect, because all of its nearest neighbors in evolution are DNA-cytosine C5-methyltransferases and methylate DNA, while its (own) DNA methyltransferase activity is the subject of controversial reports with rates varying between zero and very weak. This work determines whether the biochemical potential for DNA methylation is present in the enzyme. It was discovered that DNA fragments, when presented as covalent RNA:DNA hybrids in the structural context of a tRNA, can be more efficiently methylated than the corresponding natural tRNA substrate. Additional minor deviations from a native tRNA structure that were seen to be tolerated by Dnmt2 were used for a stepwise development of a composite system of guide RNAs that enable the enzyme to perform cytidine methylation on single stranded DNA in vitro. Furthermore, a proof-of-principle is presented for utilizing the S-adenosyl methionine-analog cofactor SeAdoYn with Dnmt2 to search for new possible substrates in a SELEX-like approach.rnIn innate immunity, nucleic acids can function as pathogen associated molecular patterns (PAMPs) recognized by pattern recognition receptors (PRRs). The modification pattern of RNA is the discriminating factor for toll-like receptor 7 (TLR7) to distinguish between self and non-self RNA of invading pathogens. It was found that a 2'-O-methylated guanosine (Gm) at position18, naturally occurring at this position in some tRNAs, antagonizes recognition by TLR7. In the second part of this work it is pointed out, that recognition extends to the next downstream nucleotide and the effectively recognized molecular detail is actually a methylated dinucleotide. The immune silencing effect of the ribose methylation is most pronounced if the dinucleotide motif is composed of purin nucleobases whereas pyrimidines diminish the effect. Similar results were obtained when the Gm modification was transposed into other tRNA domains. Point mutations abolishing base pairings important for a proper tertiary structure had no effect on the immune stimulatory potential of a Gm modified tRNA. Taken together these results suggest a processive type of RNA inspection by TLR7.rn