18 resultados para Numerical surface modeling
Resumo:
In der Erdöl– und Gasindustrie sind bildgebende Verfahren und Simulationen auf der Porenskala im Begriff Routineanwendungen zu werden. Ihr weiteres Potential lässt sich im Umweltbereich anwenden, wie z.B. für den Transport und Verbleib von Schadstoffen im Untergrund, die Speicherung von Kohlendioxid und dem natürlichen Abbau von Schadstoffen in Böden. Mit der Röntgen-Computertomografie (XCT) steht ein zerstörungsfreies 3D bildgebendes Verfahren zur Verfügung, das auch häufig für die Untersuchung der internen Struktur geologischer Proben herangezogen wird. Das erste Ziel dieser Dissertation war die Implementierung einer Bildverarbeitungstechnik, die die Strahlenaufhärtung der Röntgen-Computertomografie beseitigt und den Segmentierungsprozess dessen Daten vereinfacht. Das zweite Ziel dieser Arbeit untersuchte die kombinierten Effekte von Porenraumcharakteristika, Porentortuosität, sowie die Strömungssimulation und Transportmodellierung in Porenräumen mit der Gitter-Boltzmann-Methode. In einer zylindrischen geologischen Probe war die Position jeder Phase auf Grundlage der Beobachtung durch das Vorhandensein der Strahlenaufhärtung in den rekonstruierten Bildern, das eine radiale Funktion vom Probenrand zum Zentrum darstellt, extrahierbar und die unterschiedlichen Phasen ließen sich automatisch segmentieren. Weiterhin wurden Strahlungsaufhärtungeffekte von beliebig geformten Objekten durch einen Oberflächenanpassungsalgorithmus korrigiert. Die Methode der „least square support vector machine” (LSSVM) ist durch einen modularen Aufbau charakterisiert und ist sehr gut für die Erkennung und Klassifizierung von Mustern geeignet. Aus diesem Grund wurde die Methode der LSSVM als pixelbasierte Klassifikationsmethode implementiert. Dieser Algorithmus ist in der Lage komplexe geologische Proben korrekt zu klassifizieren, benötigt für den Fall aber längere Rechenzeiten, so dass mehrdimensionale Trainingsdatensätze verwendet werden müssen. Die Dynamik von den unmischbaren Phasen Luft und Wasser wird durch eine Kombination von Porenmorphologie und Gitter Boltzmann Methode für Drainage und Imbibition Prozessen in 3D Datensätzen von Böden, die durch synchrotron-basierte XCT gewonnen wurden, untersucht. Obwohl die Porenmorphologie eine einfache Methode ist Kugeln in den verfügbaren Porenraum einzupassen, kann sie dennoch die komplexe kapillare Hysterese als eine Funktion der Wassersättigung erklären. Eine Hysterese ist für den Kapillardruck und die hydraulische Leitfähigkeit beobachtet worden, welche durch die hauptsächlich verbundenen Porennetzwerke und der verfügbaren Porenraumgrößenverteilung verursacht sind. Die hydraulische Konduktivität ist eine Funktion des Wassersättigungslevels und wird mit einer makroskopischen Berechnung empirischer Modelle verglichen. Die Daten stimmen vor allem für hohe Wassersättigungen gut überein. Um die Gegenwart von Krankheitserregern im Grundwasser und Abwässern vorhersagen zu können, wurde in einem Bodenaggregat der Einfluss von Korngröße, Porengeometrie und Fluidflussgeschwindigkeit z.B. mit dem Mikroorganismus Escherichia coli studiert. Die asymmetrischen und langschweifigen Durchbruchskurven, besonders bei höheren Wassersättigungen, wurden durch dispersiven Transport aufgrund des verbundenen Porennetzwerks und durch die Heterogenität des Strömungsfeldes verursacht. Es wurde beobachtet, dass die biokolloidale Verweilzeit eine Funktion des Druckgradienten als auch der Kolloidgröße ist. Unsere Modellierungsergebnisse stimmen sehr gut mit den bereits veröffentlichten Daten überein.
Resumo:
In this thesis different approaches for the modeling and simulation of the blood protein fibrinogen are presented. The approaches are meant to systematically connect the multiple time and length scales involved in the dynamics of fibrinogen in solution and at inorganic surfaces. The first part of the thesis will cover simulations of fibrinogen on an all atom level. Simulations of the fibrinogen protomer and dimer are performed in explicit solvent to characterize the dynamics of fibrinogen in solution. These simulations reveal an unexpectedly large and fast bending motion that is facilitated by molecular hinges located in the coiled-coil region of fibrinogen. This behavior is characterized by a bending and a dihedral angle and the distribution of these angles is measured. As a consequence of the atomistic detail of the simulations it is possible to illuminate small scale behavior in the binding pockets of fibrinogen that hints at a previously unknown allosteric effect. In a second step atomistic simulations of the fibrinogen protomer are performed at graphite and mica surfaces to investigate initial adsorption stages. These simulations highlight the different adsorption mechanisms at the hydrophobic graphite surface and the charged, hydrophilic mica surface. It is found that the initial adsorption happens in a preferred orientation on mica. Many effects of practical interest involve aggregates of many fibrinogen molecules. To investigate such systems, time and length scales need to be simulated that are not attainable in atomistic simulations. It is therefore necessary to develop lower resolution models of fibrinogen. This is done in the second part of the thesis. First a systematically coarse grained model is derived and parametrized based on the atomistic simulations of the first part. In this model the fibrinogen molecule is represented by 45 beads instead of nearly 31,000 atoms. The intra-molecular interactions of the beads are modeled as a heterogeneous elastic network while inter-molecular interactions are assumed to be a combination of electrostatic and van der Waals interaction. A method is presented that determines the charges assigned to beads by matching the electrostatic potential in the atomistic simulation. Lastly a phenomenological model is developed that represents fibrinogen by five beads connected by rigid rods with two hinges. This model only captures the large scale dynamics in the atomistic simulations but can shed light on experimental observations of fibrinogen conformations at inorganic surfaces.
Resumo:
Coarse graining is a popular technique used in physics to speed up the computer simulation of molecular fluids. An essential part of this technique is a method that solves the inverse problem of determining the interaction potential or its parameters from the given structural data. Due to discrepancies between model and reality, the potential is not unique, such that stability of such method and its convergence to a meaningful solution are issues.rnrnIn this work, we investigate empirically whether coarse graining can be improved by applying the theory of inverse problems from applied mathematics. In particular, we use the singular value analysis to reveal the weak interaction parameters, that have a negligible influence on the structure of the fluid and which cause non-uniqueness of the solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable against the mentioned discrepancies. Then, we compare it to the existing physical methods - the Iterative Boltzmann Inversion and the Inverse Monte Carlo method, which are fast and well adapted to the problem, but sometimes have convergence problems.rnrnFrom analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful approximation of the structure and use it to derive a modification of the Levenberg-Marquardt method. We engage the latter for reconstruction of the interaction parameters from experimental data for liquid argon and nitrogen. We show that the modified method is stable, convergent and fast. Further, the singular value analysis of the structure and its approximation allows to determine the crucial interaction parameters, that is, to simplify the modeling of interactions. Therefore, our results build a rigorous bridge between the inverse problem from physics and the powerful solution tools from mathematics. rn