21 resultados para N-15-nmr Chemical-shifts


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organische Ladungstransfersysteme weisen eine Vielfalt von konkurrierenden Wechselwirkungen zwischen Ladungs-, Spin- und Gitterfreiheitsgraden auf. Dies führt zu interessanten physikalischen Eigenschaften, wie metallische Leitfähigkeit, Supraleitung und Magnetismus. Diese Dissertation beschäftigt sich mit der elektronischen Struktur von organischen Ladungstransfersalzen aus drei Material-Familien. Dabei kamen unterschiedliche Photoemissions- und Röntgenspektroskopietechniken zum Einsatz. Die untersuchten Moleküle wurden z.T. im MPI für Polymerforschung synthetisiert. Sie stammen aus der Familie der Coronene (Donor Hexamethoxycoronen HMC und Akzeptor Coronen-hexaon COHON) und Pyrene (Donor Tetra- und Hexamethoxypyren TMP und HMP) im Komplex mit dem klassischen starken Akzeptor Tetracyanoquinodimethan (TCNQ). Als dritte Familie wurden Ladungstransfersalze der k-(BEDT-TTF)2X Familie (X ist ein monovalentes Anion) untersucht. Diese Materialien liegen nahe bei einem Bandbreite-kontrollierten Mottübergang im Phasendiagramm.rnFür Untersuchungen mittels Ultraviolett-Photoelektronenspektroskopie (UPS) wurden UHV-deponierte dünne Filme erzeugt. Dabei kam ein neuer Doppelverdampfer zum Einsatz, welcher speziell für Milligramm-Materialmengen entwickelt wurde. Diese Methode wies im Ladungstransferkomplex im Vergleich mit der reinen Donor- und Akzeptorspezies energetische Verschiebungen von Valenzzuständen im Bereich weniger 100meV nach. Ein wichtiger Aspekt der UPS-Messungen lag im direkten Vergleich mit ab-initio Rechnungen.rnDas Problem der unvermeidbaren Oberflächenverunreinigungen von lösungsgezüchteten 3D-Kristallen wurde durch die Methode Hard-X-ray Photoelectron Spectroscopy (HAXPES) bei Photonenenergien um 6 keV (am Elektronenspeicherring PETRA III in Hamburg) überwunden. Die große mittlere freie Weglänge der Photoelektronen im Bereich von 15 nm resultiert in echter Volumensensitivität. Die ersten HAXPES Experimente an Ladungstransferkomplexen weltweit zeigten große chemische Verschiebungen (mehrere eV). In der Verbindung HMPx-TCNQy ist die N1s-Linie ein Fingerabdruck der Cyanogruppe im TCNQ und zeigt eine Aufspaltung und einen Shift zu höheren Bindungsenergien von bis zu 6 eV mit zunehmendem HMP-Gehalt. Umgekehrt ist die O1s-Linie ein Fingerabdruck der Methoxygruppe in HMP und zeigt eine markante Aufspaltung und eine Verschiebung zu geringeren Bindungsenergien (bis zu etwa 2,5eV chemischer Verschiebung), d.h. eine Größenordnung größer als die im Valenzbereich.rnAls weitere synchrotronstrahlungsbasierte Technik wurde Near-Edge-X-ray-Absorption Fine Structure (NEXAFS) Spektroskopie am Speicherring ANKA Karlsruhe intensiv genutzt. Die mittlere freie Weglänge der niederenergetischen Sekundärelektronen (um 5 nm). Starke Intensitätsvariationen von bestimmten Vorkanten-Resonanzen (als Signatur der unbesetzte Zustandsdichte) zeigen unmittelbar die Änderung der Besetzungszahlen der beteiligten Orbitale in der unmittelbaren Umgebung des angeregten Atoms. Damit war es möglich, präzise die Beteiligung spezifischer Orbitale im Ladungstransfermechanismus nachzuweisen. Im genannten Komplex wird Ladung von den Methoxy-Orbitalen 2e(Pi*) und 6a1(σ*) zu den Cyano-Orbitalen b3g und au(Pi*) und – in geringerem Maße – zum b1g und b2u(σ*) der Cyanogruppe transferiert. Zusätzlich treten kleine energetische Shifts mit unterschiedlichem Vorzeichen für die Donor- und Akzeptor-Resonanzen auf, vergleichbar mit den in UPS beobachteten Shifts.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycarbosilanes are a class of polymers at the interface between organic and inorganic chemistry. They are characterized by a high thermal and chemical inertness and high flexibility, especially pronounced for branched structures. Linear polycarbosilanes are well known as precursors for the preparation of SiCx ceramics. Additionally, more sophisticated architectures like dendrimers, hyperbranched polymers or block copolymers have been the subject of research for more than a decade. The scope of this work was to expand the properties and fields of application for polycarbosilane-containing structures. Thus, the work is divided in two major parts. The first part covers the synthesis and characterization of hyperbranched polycarbosilanes containing organometallic moieties. Hyperbranched poly-carbosilanes were synthesized using hydrosilylation of diallylmethylsilane and methyldiundecenylsilane. The degree of branching for polydiallymethylsilane was determined using standard 1H-NMR spectroscopy. The functional building blocks ferrocenyldimethylsilane and diferrocenylmethylsilane were synthesized which contain an isolated ferrocene unit or two ferrocenes bridged by silicon, respectively. Hyperbranched polycarbosilanes functionalized with ferrocenyl moieties were synthesized by modification of preformed polymers or by copolymerization of AB2 carbosilane monomers with AX-type ferrocenylsilanes. Polymers with Mn = 2500-9000g/mol and ferrocene contents of up to 67wt% were obtained. Electrochemical characterization by cyclic voltammetry revealed that polymers functionalized with isolated ferrocene units showed a single reversible oxidation wave, while voltammograms for polymers functionalized with diferrocenyl silane exhibited two well-separated reversible oxidation-reduction waves. This shows that the polymer bound ferrocenes bridged by silicon are electronically communicating and thus oxidation of the first ferrocene shifts the oxidation potential for the adjacent one. The polymers were utilized successfully for the preparation of modified electrodes with persistent and reproducible electrochemical response in organic solvents as well as in aqueous solution. The presented work has proven that ferrocenyl-functionalized hyperbranched polymers exhibit similar electrochemical properties as the analogous dendrimers. In a further approach it was shown that hyperbranched polymers containing organometallic moieties can be synthesized by polymerization of a new ferrocene-containing AB2 monomer - diallylferrocenylsilane. The second part of this work is dedicated to the preparation of core-functional hyperbranched polycarbosilanes. Low molecular weight ambifunctional molecules were synthesized that contain double bonds for the attachment of a polycarbosilane polymer as well as a second functionality available for further reaction and modification. Reactive vinyl groups in the core molecule allow an efficient attachment of hyperbranched polycarbosilane which was proven by MALDI-ToF and GPC. In combination with slow monomer addition techniques molecular weight and polydispersity of the polymers were controlled successfully. Core-functional polymers were characterized by NMR-spectroscopy, MALDI-ToF and GPC. Polymers with polydispersities <2 and molecular weights up to 5300g/mol were obtained. Transformation of the double bonds of the carbosilane was demonstrated with various silanes using hydrosilylation reaction or hydrogenation. Additionally, the core-functionality was varied resulting in polymers with bromo-, phthalimide-, amine- or azide moieties. Thus, a versatile synthetic strategy was developed that allows the synthesis of tailor-made polymers.A promising approach is the application of the polymer building blocks in copolymer synthesis. Bisglycidolization of amine-functional polycarbosilanes produces macro-initiators that are suitable for the multibranching-ring opening polymerization of glycidol. This experiments lead to the first example of hyperbranched-hyperbranched amphiphilic block copolymers, hb-PG-b-hb-PCS. Furthermore, the implementation of copper-catalyzed cycloaddition between azide-functional polycarbosilane and alkyne-functional poly(ethoxyethyl glycidylether) resulted in linear-hyperbranched block copolymers. The facile removal of acetal protecting groups provided convenient access to lin-PG-b-hb-PCS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the remarkable versatility and usefulness of applications of Xe-129 NMR experiments is further extended. The application of Xe-129 NMR spectroscopy to very different system is studied, including dynamic and static, solid and liquid, porous and non-porous systems. Using the large non-equilibrium polarization created by hyperpolarization of Xe-129, time-resolved NMR measurements can be used for the online-monitoring of dynamic systems. In the first part of this work, several improvements for medical applications of hyperpolarized Xe-129 are achieved and their feasibility shown experimentally. A large gain in speed and reproducibility of the accumulation process of Xe-129 as ice and an enhancement of the usable polarization in any experiment requiring prior accumulation are achieved. An enhancement of the longitudinal relaxation time of Xe-129 is realized by admixture of a buffer gas during the storage of hyperpolarized Xe-129. Pursuing the efforts of simplifying the accumulation process and enhancing the storage time of hyperpolarized Xe-129 will allow for a wider use of the hyperpolarized gas in (medical) MRI experiments. Concerning the use of hyperpolarized Xe-129 in MRI, the influence of the diffusion coefficient of the gas on parameters of the image contrast is experimentally demonstrated here by admixture of a buffer gas and thus changing the diffusion coefficient. In the second part of this work, a polymer system with unique features is probed by Xe-129 NMR spectroscopy, proving the method to be a valuable tool for the characterization of the anisotropic properties of semicrystalline, syndiotactic polystyrene films. The polymer films contain hollow cavities or channels with sizes in the sub-nanometer range, allowing for adsorption of Xe-129 and subsequent NMR measurements. Despite the use of a ’real-world’ system, the transfer of the anisotropic properties from the material to adsorbed Xe-129 atoms is shown, which was previously only known for fully crystalline materials. The anisotropic behavior towards atomar guests inside the polymer films is proven here for the first time for one of the phases. For the polymer phase containing nanochannels, the dominance of interactions between Xe-129 atoms in the channels compared to interactions between Xe atoms and the channel walls are proven by measurements of a powder sample of the polymer material and experiments including the rotation of the films in the external magnetic field as well as temperature-dependent measurements. The characterization of ’real-world’ systems showing very high degrees of anisotropy by Xe-129 are deemed to be very valuable in future applications. In the last part of this work, a new method for the online monitoring of chemical reactions has been proposed and its feasibility and validity are experimentally proven. The chemical shift dependence of dissolved Xe-129 on the composition of a reaction mixture is used for the online monitoring of free-radical miniemulsion polymerization reactions. Xe-129 NMR spectroscopy provides an excellent method for the online monitoring of polymerization reactions, due to the simplicity of the Xe-129 NMR spectra and the simple relationship between the Xe-129 chemical shift and the reaction conversion. The results of the time-resolved Xe-129 NMR measurements are compared to those from calorimetric measurements, showing a good qualitative agreement. The applicability of the new method to reactions other than polymerization reactions is investigated by the online monitoring of an enzymatic reaction in a miniemulsion. The successful combination of the large sensitivity of Xe-129, the NMR signal enhancements due to hyperpolarization, and the solubility of Xe-129 gives access to the large new field of investigations of chemical reaction kinetics in dynamic and complex systems like miniemulsions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intense research is being done in the field of organic photovoltaics in order to synthesize low band-gap organic molecules. These molecules are electron donors which feature in combination with acceptor molecules, typically fullerene derivarntives, forming an active blend. This active blend has phase separated bicontinuous morphology on a nanometer scale. The highest recorded power conversionrnefficiencies for such cells have been 10.6%. Organic semiconductors differ from inorganic ones due to the presence of tightly bonded excitons (electron-hole pairs)resulting from their low dielectric constant (εr ≈2-4). An additional driving force is required to separate such Frenkel excitons since their binding energy (0.3-1 eV) is too large to be dissociated by an electric field alone. This additional driving force arises from the energy difference between the lowest unoccupied molecular orbital (LUMO) of the donor and the acceptor materials. Moreover, the efficiency of the cells also depends on the difference between the highest occupied molecular orbital (HOMO) of the donor and LUMO of the acceptor. Therefore, a precise control and estimation of these energy levels are required. Furthermore any external influences that change the energy levels will cause a degradation of the power conversion efficiency of organic solar cell materials. In particular, the role of photo-induced degradation on the morphology and electrical performance is a major contribution to degradation and needs to be understood on a nanometer scale. Scanning Probe Microscopy (SPM) offers the resolution to image the nanometer scale bicontinuous morphology. In addition SPM can be operated to measure the local contact potential difference (CPD) of materials from which energy levels in the materials can be derived. Thus SPM is an unique method for the characterization of surface morphology, potential changes and conductivity changes under operating conditions. In the present work, I describe investigations of organic photovoltaic materials upon photo-oxidation which is one of the major causes of degradation of these solar cell materials. SPM, Nuclear Magnetic Resonance (NMR) and UV-Vis spectroscopy studies allowed me to identify the chemical reactions occurring inside the active layer upon photo-oxidation. From the measured data, it was possible to deduce the energy levels and explain the various shifts which gave a better understanding of the physics of the device. In addition, I was able to quantify the degradation by correlating the local changes in the CPD and conductivity to the device characteristics, i.e., open circuit voltage and short circuit current. Furthermore, time-resolved electrostatic force microscopy (tr-EFM) allowed us to probe dynamic processes like the charging rate of the individual donor and acceptor domains within the active blend. Upon photo-oxidation, it was observed, that the acceptor molecules got oxidized first preventing the donor polymer from degrading. Work functions of electrodes can be tailored by modifying the interface with monomolecular thin layers of molecules which are made by a chemical reaction in liquids. These modifications in the work function are particularly attractive for opto-electronic devices whose performance depends on the band alignment between the electrodes and the active material. In order to measure the shift in work function on a nanometer scale, I used KPFM in situ, which means in liquids, to follow changes in the work function of Au upon hexadecanethiol adsorption from decane. All the above investigations give us a better understanding of the photo-degradation processes of the active material at the nanoscale. Also, a method to compare various new materials used for organic solar cells for stability is proposed which eliminates the requirement to make fully functional devices saving time and additional engineering efforts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flüchtige organische Halogenverbindungen übernehmen in der Chemie der Troposphäre eine Schlüsselrolle. Photolytisch gebildete Halogenatome reagieren mit troposphärischem Ozon und können durch Oxidation, vor allem von Iod, zur Neubildung von Partikeln beitragen. Auf diese Weise beeinflussen Halogenalkane den Strahlungshaushalt der Atmosphäre. Aus analytischem Blickwinkel ist es wichtig die Konzentration der einzelnen Spezies zu untersuchen um Rückschlüsse auf deren biotische oder abiotische Quellen ziehen und die Emissionswege besser verstehen zu können. Im Rahmen der vorliegenden Arbeit wurde daher eine sensitive Methode zur Untersuchung von halogenierten Kohlenwasserstoffen entwickelt, basierend auf anreichernder Probenahme mit anschließender Thermodesorption und der Analyse mittels Massenspektrometrie mit negativer chemischer Ionisation. Die Kennwerte der Methode sind: Nachweisgrenzen zwischen 0.11 pg und 5.86 pg bzw. zwischen 1.0 ppqV und 44.7 ppqV, Linearität zwischen R2=0.993 und R2=1.000, Reproduzierbarkeit (Triplikate) RSD < 15 % und ein sicheres Probenahmevolumen von 10 L. Die Methode wurde im Anschluss im Rahmen von zwei Feldmessungen, in Mace Head, Irland und auf einer Schiffskampagne im antarktischen Amundsen-Meer, angewendet. Durch die Ergebnisse aus Irland kann gezeigt werden, dass die Mischungsverhältnisse der Iodalkane mit denen früherer Studien vergleichbar sind, und dass die verschiedenen untersuchten Algenarten deutlich unterschiedliche Emissionsraten zeigen. Die Ergebnisse der Kampagne im Amundsen-Meer zeigen einen großen Einfluss der Windrichtung auf die Halogenalkan-Konzentrationen. So sind die Mischungsverhältnisse der Halogenalkane deutlich höher, wenn der Wind zuvor über die antarktischen Eisflächen strömt. Für die biotischen Quellen wurden die Emissionsraten ausgewählter Makroalgen unter dem Einfluss von Ozon untersucht. Die Emissionsrate der Iodalkane zeigt einen exponentiellen Zusammenhang, sowohl zur I2-Emission als auch zum Gesamtiodgehalt der Algen. Unter oxidativen Bedingungen zeigt L. Digitata eine linear steigende Iodalkanemission. Mit diesem Verhalten wird die These der Bildung von Iodalkanen als Nebenprodukt beim Abbau reaktiver Sauerstoffspezies unterstützt. Neben den Makroalgen wurden auch Mikroalgen als biotische Quellen untersucht. Hierbei können zwei unterschiedliche Emissionsmuster der Halogenalkane für Diatomeen und Phaeocystis sp. gezeigt werden. Im Gegensatz zur Iodalkan-Emission hängt die I2 Emission der Mikroalgenproben von der Ozonkonzentration der Luft ab. Durch die lineare Korrelation der I2-Emission mit der Iodid-Konzentration der wässrigen Phase einerseits, und dem Ozonverbrauch andererseits, kann die Bildung von I2 durch Oxidation von Iodid durch Ozon bestätigt werden. Für das Emissionsverhalten der Mikroalgenprobe aus dem Sylter Wattenmeer, welche keine Korrelation mit dem verbrauchten Ozon zeigt, gibt es zwei Erklärungen: Zum einen kann I2 durch den hohen Gehalt an organischen Verbindungen an diesen adsorbiert bzw. chemisch gebunden werden und wird dann nicht mehr in die Gasphase emittiert. Zum anderen können aktive organische Verbindungen das Gleichgewicht zwischen HOI und I2 in Richtung HOI verlagern. Im Versuch zur abiotischen Bildung von Iodalkanen aus Partikeln, bestehend aus I2O5 und verschiedenen Alkoholen, kann gezeigt werden, dass die Bildung von Iodmethan und Diiodmethan abläuft, dass jedoch die Emission bis zu zwei Größenordnungen kleiner ist als die von I2. Somit trägt die Bildung von Iodalkanen nur in einem sehr eingeschränkten Rahmen zum Recycling des Iods in der Atmosphäre bei. Der vorgestellte abiotische Bildungsweg hängt sowohl vom pH-Wert als auch vom Mischungsverhältnis im Partikel ab.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Das Ziel dieser Arbeit war es, mehr Informationen über unkonventionelle Gründe für Gärstockungen zu gewinnen und neue Wege zu finden, diese zu überwinden. Mikrobielle Sukzession und die chemische Zusammensetzung bei der Gärung wurden in zwei aufeinander folgenden Jahren in einem Weingut von der oberen Mosel in Deutschland studiert. Es gab keinen Hinweis darauf, dass die isolierten Bakterienspezies oder chemischen Komponenten von Most und Jungwein an schleppenden oder stockenden Gärungen beteiligt waren. Ferner konnte während dieser Arbeit gezeigt werden, dass Saccharomyces bayanus die dominierende Weinhefe in diesem Weingut war statt der klassischen und bekannten Weinhefe Saccharomyces cerevisiae. Während der Gärstockung konnte ein Dreifach-Hybrid Saccharomyces cerevisiae x Saccharomyces kudriavzevii x Saccharomyces bayanus wachsen, Saccharomyces bayanus ersetzen und die Gärung beenden. Beide isolierten Hefestämme Saccharomyces bayanus Stamm HL 77 und der Dreifach-Hybrid Saccharomyces cerevisiae x Saccharomyces kudriavzevii x Saccharomyces bayanus Stamm HL 78 konnten Glucose und Fructose von Anfang an verwerten und konnten bei niedrigen Temperaturen von 15 °C und in der Abwesenheit von Hefe-verwertbarem Stickstoff in Form von Ammonium wachsen, solange Aminosäuren im Medium vorhanden waren, im Gegensatz zu einer kommerziellen Saccharomyces cerevisiae-Starterkultur. Chemische Untersuchungen ergaben, dass Hefe-verwertbarer Stickstoff in dem kooperierenden Weingut mit einem Maximum von 160 mg/l zu Beginn der Gärung vorhanden war und auf 40 mg/L verringert war nach zwei Wochen. Aus diesem Grund sind beide isolierten Hefestämme interessant als Starterkulturen in diesem Weingut und dies kann neben der niedrigen Temperatur im Keller auch ein Grund sein, warum Saccharomyces cerevisiae nicht die dominierende Weinhefe in diesem Fall ist. Der Dreifach-Hybrid Saccharomyces cerevisiae x Saccharomyces kudriavzevii x Saccharomyces bayanus Stamm HL 78 ist in der Lage, Fructose noch effizienter zu nutzen als Saccharomyces bayanus Stamm HL 77 und ist weniger abhängig von der Aminosäurekonzentration. Dieser Stamm wurde bereits erfolgreich bei diesem Projekt eingesetzt, um eine Gärstockung in dem kooperierenden Weingut zu beheben. Es ist bekannt, dass Saccharomyces-Hybride in der Weinherstellung vorkommen aber ihre Rolle bei der Überwindung von Gärstockungen wurde bisher noch nicht beschrieben. Diese Ergebnisse sind nützlich, um Gärstockungen zu vermeiden oder zu überwinden mit der selektiven Verwendung dieser Hefestämme in verschiedenen Stadien der Gärung. Das kooperierende Weingut, welches im oberen Qualitätssegment platziert ist, hatte jedes Jahr Probleme mit Gärstockungen. Daher ist die Anwendung der Dreifach-Hybriden Saccharomyces cerevisiae x Saccharomyces kudriavzevii x Saccharomyces bayanus Stamm HL 78 eine große Chance, Gärstockungen und finanzielle Verluste ohne kommerzielle Starterkulturen oder andere übliche Praktiken, die zu einer Veränderung des Aromaprofils führen können, zu vermeiden. Die beschriebenen Untersuchungen stellen ein Modell dar, um Gärstockungen auch in anderen Weingütern, die Spontangärungen anwenden, zu überwinden.