29 resultados para Elliptic Integrals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dieser Arbeit wurde die elektromagnetische Pionproduktion unter der Annahme der Isospinsymmetrie der starken Wechselwirkung im Rahmen der manifest Lorentz-invarianten chiralen Störungstheorie in einer Einschleifenrechnung bis zur Ordnung vier untersucht. Dazu wurden auf der Grundlage des Mathematica-Pakets FeynCalc Algorithmen zur Berechnung der Pionproduktionsamplitude entwickelt. Bis einschließlich der Ordnung vier tragen insgesamt 105 Feynmandiagramme bei, die sich in 20 Baumdiagramme und 85 Schleifendiagramme unterteilen lassen. Von den 20 Baumdiagrammen wiederum sind 16 als Polterme und vier als Kontaktgraphen zu klassifizieren; bei den Schleifendiagrammen tragen 50 Diagramme ab der dritten Ordnung und 35 Diagramme ab der vierten Ordnung bei. In der Einphotonaustauschnäherung lässt sich die Pionproduktionsamplitude als ein Produkt des Polarisationsvektors des (virtuellen) Photons und des Übergangsstrommatrixelements parametrisieren, wobei letzteres alle Abhängigkeiten der starken Wechselwirkung beinhaltet und wo somit die chirale Störungstheorie ihren Eingang findet. Der Polarisationsvektor hingegen hängt von dem leptonischen Vertex und dem Photonpropagator ab und ist aus der QED bekannt. Weiterhin lässt sich das Übergangsstrommatrixelement in sechs eichinvariante Amplituden zerlegen, die sich im Rahmen der Isospinsymmetrie jeweils wiederum in drei Isospinamplituden zerlegen lassen. Linearkombinationen dieser Isospinamplituden erlauben letztlich die Beschreibung der physikalischen Amplituden. Die in dieser Rechnung auftretenden Einschleifenintegrale wurden numerisch mittels des Programms LoopTools berechnet. Im Fall tensorieller Integrale erfolgte zunächst eine Zerlegung gemäß der Methode von Passarino und Veltman. Da die somit erhaltenen Ergebnisse jedoch i.a. noch nicht das chirale Zählschema erfüllen, wurde die entsprechende Renormierung mittels der reformulierten Infrarotregularisierung vorgenommen. Zu diesem Zweck wurde ein Verfahren entwickelt, welches die Abzugsterme automatisiert bestimmt. Die schließlich erhaltenen Isospinamplituden wurden in das Programm MAID eingebaut. In diesem Programm wurden als Test (Ergebnisse bis Ordnung drei) die s-Wellenmultipole E_{0+} und L_{0+} in der Schwellenregion berechnet. Die Ergebnisse wurden sowohl mit Messdaten als auch mit den Resultaten des "klassischen" MAID verglichen, wobei sich i. a. gute Übereinstimmungen im Rahmen der Fehler ergaben.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to explore, within the framework of the presumably asymptotically safe Quantum Einstein Gravity, quantum corrections to black hole spacetimes, in particular in the case of rotating black holes. We have analysed this problem by exploiting the scale dependent Newton s constant implied by the renormalization group equation for the effective average action, and introducing an appropriate "cutoff identification" which relates the renormalization scale to the geometry of the spacetime manifold. We used these two ingredients in order to "renormalization group improve" the classical Kerr metric that describes the spacetime generated by a rotating black hole. We have focused our investigation on four basic subjects of black hole physics. The main results related to these topics can be summarized as follows. Concerning the critical surfaces, i.e. horizons and static limit surfaces, the improvement leads to a smooth deformation of the classical critical surfaces. Their number remains unchanged. In relation to the Penrose process for energy extraction from black holes, we have found that there exists a non-trivial correlation between regions of negative energy states in the phase space of rotating test particles and configurations of critical surfaces of the black hole. As for the vacuum energy-momentum tensor and the energy conditions we have shown that no model with "normal" matter, in the sense of matter fulfilling the usual energy conditions, can simulate the quantum fluctuations described by the improved Kerr spacetime that we have derived. Finally, in the context of black hole thermodynamics, we have performed calculations of the mass and angular momentum of the improved Kerr black hole, applying the standard Komar integrals. The results reflect the antiscreening character of the quantum fluctuations of the gravitational field. Furthermore we calculated approximations to the entropy and the temperature of the improved Kerr black hole to leading order in the angular momentum. More generally we have proven that the temperature can no longer be proportional to the surface gravity if an entropy-like state function is to exist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis a mathematical model was derived that describes the charge and energy transport in semiconductor devices like transistors. Moreover, numerical simulations of these physical processes are performed. In order to accomplish this, methods of theoretical physics, functional analysis, numerical mathematics and computer programming are applied. After an introduction to the status quo of semiconductor device simulation methods and a brief review of historical facts up to now, the attention is shifted to the construction of a model, which serves as the basis of the subsequent derivations in the thesis. Thereby the starting point is an important equation of the theory of dilute gases. From this equation the model equations are derived and specified by means of a series expansion method. This is done in a multi-stage derivation process, which is mainly taken from a scientific paper and which does not constitute the focus of this thesis. In the following phase we specify the mathematical setting and make precise the model assumptions. Thereby we make use of methods of functional analysis. Since the equations we deal with are coupled, we are concerned with a nonstandard problem. In contrary, the theory of scalar elliptic equations is established meanwhile. Subsequently, we are preoccupied with the numerical discretization of the equations. A special finite-element method is used for the discretization. This special approach has to be done in order to make the numerical results appropriate for practical application. By a series of transformations from the discrete model we derive a system of algebraic equations that are eligible for numerical evaluation. Using self-made computer programs we solve the equations to get approximate solutions. These programs are based on new and specialized iteration procedures that are developed and thoroughly tested within the frame of this research work. Due to their importance and their novel status, they are explained and demonstrated in detail. We compare these new iterations with a standard method that is complemented by a feature to fit in the current context. A further innovation is the computation of solutions in three-dimensional domains, which are still rare. Special attention is paid to applicability of the 3D simulation tools. The programs are designed to have justifiable working complexity. The simulation results of some models of contemporary semiconductor devices are shown and detailed comments on the results are given. Eventually, we make a prospect on future development and enhancements of the models and of the algorithms that we used.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with the calculation of virtual Compton scattering (VCS) in manifestly Lorentz-invariant baryon chiral perturbation theory to fourth order in the momentum and quark-mass expansion. In the one-photon-exchange approximation, the VCS process is experimentally accessible in photon electro-production and has been measured at the MAMI facility in Mainz, at MIT-Bates, and at Jefferson Lab. Through VCS one gains new information on the nucleon structure beyond its static properties, such as charge, magnetic moments, or form factors. The nucleon response to an incident electromagnetic field is parameterized in terms of 2 spin-independent (scalar) and 4 spin-dependent (vector) generalized polarizabilities (GP). In analogy to classical electrodynamics the two scalar GPs represent the induced electric and magnetic dipole polarizability of a medium. For the vector GPs, a classical interpretation is less straightforward. They are derived from a multipole expansion of the VCS amplitude. This thesis describes the first calculation of all GPs within the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. Because of the comparatively large number of diagrams - 100 one-loop diagrams need to be calculated - several computer programs were developed dealing with different aspects of Feynman diagram calculations. One can distinguish between two areas of development, the first concerning the algebraic manipulations of large expressions, and the second dealing with numerical instabilities in the calculation of one-loop integrals. In this thesis we describe our approach using Mathematica and FORM for algebraic tasks, and C for the numerical evaluations. We use our results for real Compton scattering to fix the two unknown low-energy constants emerging at fourth order. Furthermore, we present the results for the differential cross sections and the generalized polarizabilities of VCS off the proton.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To aid the design of organic semiconductors, we study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The results are compared for the different compounds and methods and, where available, with experimental data. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. When taking only intra-columnar transport into account, the mobility is orders of magnitude lower than in the three-dimensional case. BTBT is a promising material for solution-processed organic field-effect transistors. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The resulting broad transfer integral distributions modify the connectivity of the system but sufficiently many fast percolation paths remain for the charges. Rubrene, indolocarbazole and BBBT are examples of crystals without significant static disorder. The high mobility of rubrene is explained by two main features: first, the shifted cofacial alignment of its molecules, and second, the high center of mass vibrational frequency. In comparsion to SCD, only KMC based on Marcus rates is capable of describing neighbors with low coupling and of taking static disorder into account three-dimensionally. Thus it is the method of choice for crystalline systems dominated by static disorder. However, it is inappropriate for the case of strong coupling and underestimates the mobility of well-ordered crystals. SCD, despite its one-dimensionality, is valuable for crystals with strong coupling and little disorder. It also allows correct treatment of dynamical effects, such as intermolecular vibrations of the molecules. Rate equations are incapable of this, because simulations are performed on static snapshots. We have thus shown strengths and weaknesses of two state of the art models used to study charge transport in organic compounds, partially developed a program to compute and visualize transfer integral distributions and other charge transport properties, and found structure-mobility relations for several promising organic semiconductors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Within this thesis a new double laser pulse pumping scheme for plasma-based, transient collisionally excited soft x-ray lasers (SXRL) was developed, characterized and utilized for applications. SXRL operations from ~50 up to ~200 electron volt were demonstrated applying this concept. As a central technical tool, a special Mach-Zehnder interferometer in the chirped pulse amplification (CPA) laser front-end was developed for the generation of fully controllable double-pulses to optimally pump SXRLs.rnThis Mach-Zehnder device is fully controllable and enables the creation of two CPA pulses of different pulse duration and variable energy balance with an adjustable time delay. Besides the SXRL pumping, the double-pulse configuration was applied to determine the B-integral in the CPA laser system by amplifying short pulse replica in the system, followed by an analysis in the time domain. The measurement of B-integral values in the 0.1 to 1.5 radian range, only limited by the reachable laser parameters, proved to be a promising tool to characterize nonlinear effects in the CPA laser systems.rnContributing to the issue of SXRL pumping, the double-pulse was configured to optimally produce the gain medium of the SXRL amplification. The focusing geometry of the two collinear pulses under the same grazing incidence angle on the target, significantly improved the generation of the active plasma medium. On one hand the effect was induced by the intrinsically guaranteed exact overlap of the two pulses on the target, and on the other hand by the grazing incidence pre-pulse plasma generation, which allows for a SXRL operation at higher electron densities, enabling higher gain in longer wavelength SXRLs and higher efficiency at shorter wavelength SXRLs. The observation of gain enhancement was confirmed by plasma hydrodynamic simulations.rnThe first introduction of double short-pulse single-beam grazing incidence pumping for SXRL pumping below 20 nanometer at the laser facility PHELIX in Darmstadt (Germany), resulted in a reliable operation of a nickel-like palladium SXRL at 14.7 nanometer with a pump energy threshold strongly reduced to less than 500 millijoule. With the adaptation of the concept, namely double-pulse single-beam grazing incidence pumping (DGRIP) and the transfer of this technology to the laser facility LASERIX in Palaiseau (France), improved efficiency and stability of table-top high-repetition soft x-ray lasers in the wavelength region below 20 nanometer was demonstrated. With a total pump laser energy below 1 joule the target, 2 mircojoule of nickel-like molybdenum soft x-ray laser emission at 18.9 nanometer was obtained at 10 hertz repetition rate, proving the attractiveness for high average power operation. An easy and rapid alignment procedure fulfilled the requirements for a sophisticated installation, and the highly stable output satisfied the need for a reliable strong SXRL source. The qualities of the DGRIP scheme were confirmed in an irradiation operation on user samples with over 50.000 shots corresponding to a deposited energy of ~ 50 millijoule.rnThe generation of double-pulses with high energies up to ~120 joule enabled the transfer to shorter wavelength SXRL operation at the laser facility PHELIX. The application of DGRIP proved to be a simple and efficient method for the generation of soft x-ray lasers below 10 nanometer. Nickel-like samarium soft x-ray lasing at 7.3 nanometer was achieved at a low total pump energy threshold of 36 joule, which confirmed the suitability of the applied pumping scheme. A reliable and stable SXRL operation was demonstrated, due to the single-beam pumping geometry despite the large optical apertures. The soft x-ray lasing of nickel-like samarium was an important milestone for the feasibility of applying the pumping scheme also for higher pumping pulse energies, which are necessary to obtain soft x-ray laser wavelengths in the water window. The reduction of the total pump energy below 40 joule for 7.3 nanometer short wavelength lasing now fulfilled the requirement for the installation at the high-repetition rate operation laser facility LASERIX.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Der erste Teil der vorliegenden Dissertation befasst sich mit der Untersuchung der perturbativen Unitarität im Komplexe-Masse-Renormierungsschema (CMS). Zu diesem Zweck wird eine Methode zur Berechnung der Imaginärteile von Einschleifenintegralen mit komplexen Massenparametern vorgestellt, die im Grenzfall stabiler Teilchen auf die herkömmlichen Cutkosky-Formeln führt. Anhand einer Modell-Lagrangedichte für die Wechselwirkung eines schweren Vektorbosons mit einem leichten Fermion wird demonstriert, dass durch Anwendung des CMS die Unitarität der zugrunde liegenden S-Matrix im störungstheoretischen Sinne erfüllt bleibt, sofern die renormierte Kopplungskonstante reell gewählt wird. Der zweite Teil der Arbeit beschäftigt sich mit verschiedenen Anwendungen des CMS in chiraler effektiver Feldtheorie (EFT). Im Einzelnen werden Masse und Breite der Deltaresonanz, die elastischen elektromagnetischen Formfaktoren der Roperresonanz, die elektromagnetischen Formfaktoren des Übergangs vom Nukleon zur Roperresonanz sowie Pion-Nukleon-Streuung und Photo- und Elektropionproduktion für Schwerpunktsenergien im Bereich der Roperresonanz berechnet. Die Wahl passender Renormierungsbedingungen ermöglicht das Aufstellen eines konsistenten chiralen Zählschemas für EFT in Anwesenheit verschiedener resonanter Freiheitsgrade, so dass die aufgeführten Prozesse in Form einer systematischen Entwicklung nach kleinen Parametern untersucht werden können. Die hier erzielten Resultate können für Extrapolationen von entsprechenden Gitter-QCD-Simulationen zum physikalischen Wert der Pionmasse genutzt werden. Deshalb wird neben der Abhängigkeit der Formfaktoren vom quadrierten Impulsübertrag auch die Pionmassenabhängigkeit des magnetischen Moments und der elektromagnetischen Radien der Roperresonanz untersucht. Im Rahmen der Pion-Nukleon-Streuung und der Photo- und Elektropionproduktion werden eine Partialwellenanalyse und eine Multipolzerlegung durchgeführt, wobei die P11-Partialwelle sowie die Multipole M1- und S1- mittels nichtlinearer Regression an empirische Daten angepasst werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is devoted to the study of Picard-Fuchs operators associated to one-parameter families of $n$-dimensional Calabi-Yau manifolds whose solutions are integrals of $(n,0)$-forms over locally constant $n$-cycles. Assuming additional conditions on these families, we describe algebraic properties of these operators which leads to the purely algebraic notion of operators of CY-type. rnMoreover, we present an explicit way to construct CY-type operators which have a linearly rigid monodromy tuple. Therefore, we first usernthe translation of the existence algorithm by N. Katz for rigid local systems to the level of tuples of matrices which was established by M. Dettweiler and S. Reiter. An appropriate translation to the level of differential operators yields families which contain operators of CY-type. rnConsidering additional operations, we are also able to construct special CY-type operators of degree four which have a non-linearly rigid monodromy tuple. This provides both previously known and new examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gegenstand dieser Arbeit ist die nummerische Berechnung von Schleifenintegralen welche in höheren Ordnungen der Störungstheorie auftreten.rnAnalog zur reellen Emission kann man auch in den virtuellen Beiträgen Subtraktionsterme einführen, welche die kollinearen und soften Divergenzen des Schleifenintegrals entfernen. Die Phasenraumintegration und die Schleifenintegration können dann in einer einzigen Monte Carlo Integration durchgeführt werden. In dieser Arbeit zeigen wir wie eine solche numerische Integration unter zu Hilfenahme einer Kontourdeformation durchgeführt werden kann. Ausserdem zeigen wir wie man die benötigeten Integranden mit Rekursionsformeln berechnen kann.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dieser Arbeit stelle ich Aspekte zu QCD Berechnungen vor, welche eng verknüpft sind mit der numerischen Auswertung von NLO QCD Amplituden, speziell der entsprechenden Einschleifenbeiträge, und der effizienten Berechnung von damit verbundenen Beschleunigerobservablen. Zwei Themen haben sich in der vorliegenden Arbeit dabei herauskristallisiert, welche den Hauptteil der Arbeit konstituieren. Ein großer Teil konzentriert sich dabei auf das gruppentheoretische Verhalten von Einschleifenamplituden in QCD, um einen Weg zu finden die assoziierten Farbfreiheitsgrade korrekt und effizient zu behandeln. Zu diesem Zweck wird eine neue Herangehensweise eingeführt welche benutzt werden kann, um farbgeordnete Einschleifenpartialamplituden mit mehreren Quark-Antiquark Paaren durch Shufflesummation über zyklisch geordnete primitive Einschleifenamplituden auszudrücken. Ein zweiter großer Teil konzentriert sich auf die lokale Subtraktion von zu Divergenzen führenden Poltermen in primitiven Einschleifenamplituden. Hierbei wurde im Speziellen eine Methode entwickelt, um die primitiven Einchleifenamplituden lokal zu renormieren, welche lokale UV Counterterme und effiziente rekursive Routinen benutzt. Zusammen mit geeigneten lokalen soften und kollinearen Subtraktionstermen wird die Subtraktionsmethode dadurch auf den virtuellen Teil in der Berechnung von NLO Observablen erweitert, was die voll numerische Auswertung der Einschleifenintegrale in den virtuellen Beiträgen der NLO Observablen ermöglicht. Die Methode wurde schließlich erfolgreich auf die Berechnung von NLO Jetraten in Elektron-Positron Annihilation im farbführenden Limes angewandt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Dissertation dient dazu, das Verständnis des Ladungstransportes in organischen Solarzellen zu vertiefen. Mit Hilfe von Computersimulationen wird die Bewegung von Ladungsträgern in organischen Materialien rekonstruiert, und zwar ausgehend von den quantenmechanischen Prozessen auf mikroskopischer Ebene bis hin zur makroskopischen Skala, wo Ladungsträgermobilitäten quantifizierbar werden. Auf Grundlage dieses skalenübergreifenden Ansatzes werden Beziehungen zwischen der chemischen Struktur organischer Moleküle und der makroskopischen Mobilität hergestellt (Struktur-Eigenschafts-Beziehungen), die zu der Optimierung photovoltaischer Wirkungsgrade beitragen. Das Simulationsmodell beinhaltet folgende drei Schlüsselkomponenten. Erstens eine Morphologie, d. h. ein atomistisch aufgelöstes Modell der molekularen Anordnung in dem untersuchten Material. Zweitens ein Hüpfmodell des Ladungstransportes, das Ladungswanderung als eine Abfolge von Ladungstransferreaktionen zwischen einzelnen Molekülen beschreibt. Drittens ein nichtadiabatisches Modell des Ladungstransfers, das Übergangsraten durch drei Parameter ausdrückt: Reorganisationsenergien, Lageenergien und Transferintegrale. Die Ladungstransport-Simulationen richten sich auf die Materialklasse der dicyanovinyl-substituierten Oligothiophene und umfassen Morphologien von Einkristallen, Dünnschichten sowie amorphen/smektischen Mesophasen. Ein allgemeiner Befund ist, dass die molekulare Architektur, bestehend aus einer Akzeptor-Donor-Akzeptor-Sequenz und einem flexiblen Oligomergerüst, eine erhebliche Variation molekularer Dipolmomente und damit der Lageenergien bewirkt. Diese energetische Unordnung ist ungewöhnlich hoch in den Kristallen und umso höher in den Mesophasen. Für die Einkristalle wird beobachtet, dass Kristallstrukturen mit ausgeprägter π-Stapelung und entsprechend großer Transferintegrale zu verhältnismäßig niedrigen Mobilitäten führen. Dieses Verhalten wird zurückgeführt auf die Ausbildung bevorzugter Transportrichtungen, die anfällig für energetische Störungen sind. Für die Dünnschichten bestätigt sich diese Argumentation und liefert ein mikroskopisches Verständnis für experimentelle Mobilitäten. In der Tat korrelieren die Simulationsergebnisse sowohl mit gemessenen Mobilitäten als auch mit photovoltaischen Wirkungsgraden. Für die amorphen/smektischen Systeme steigt die energetische Unordnung mit der Oligomerlänge, sie führt aber auch zu einer unerwarteten Mobilitätsabnahme in dem stärker geordneten smektischen Zustand. Als Ursache dafür erweist sich, dass die smektische Schichtung der räumlichen Korrelation der energetischen Unordnung entgegensteht.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt Vorwärts- sowie Rückwärtstheorie transienter Wirbelstromprobleme. Transiente Anregungsströme induzieren elektromagnetische Felder, welche sogenannte Wirbelströme in leitfähigen Objekten erzeugen. Im Falle von sich langsam ändernden Feldern kann diese Wechselwirkung durch die Wirbelstromgleichung, einer Approximation an die Maxwell-Gleichungen, beschrieben werden. Diese ist eine lineare partielle Differentialgleichung mit nicht-glatten Koeffizientenfunktionen von gemischt parabolisch-elliptischem Typ. Das Vorwärtsproblem besteht darin, zu gegebener Anregung sowie den umgebungsbeschreibenden Koeffizientenfunktionen das elektrische Feld als distributionelle Lösung der Gleichung zu bestimmen. Umgekehrt können die Felder mit Messspulen gemessen werden. Das Ziel des Rückwärtsproblems ist es, aus diesen Messungen Informationen über leitfähige Objekte, also über die Koeffizientenfunktion, die diese beschreibt, zu gewinnen. In dieser Arbeit wird eine variationelle Lösungstheorie vorgestellt und die Wohlgestelltheit der Gleichung diskutiert. Darauf aufbauend wird das Verhalten der Lösung für verschwindende Leitfähigkeit studiert und die Linearisierbarkeit der Gleichung ohne leitfähiges Objekt in Richtung des Auftauchens eines leitfähigen Objektes gezeigt. Zur Regularisierung der Gleichung werden Modifikationen vorgeschlagen, welche ein voll parabolisches bzw. elliptisches Problem liefern. Diese werden verifiziert, indem die Konvergenz der Lösungen gezeigt wird. Zuletzt wird gezeigt, dass unter der Annahme von sonst homogenen Umgebungsparametern leitfähige Objekte eindeutig durch die Messungen lokalisiert werden können. Hierzu werden die Linear Sampling Methode sowie die Faktorisierungsmethode angewendet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is on loop-induced processes in theories with warped extra dimensions where the fermions and gauge bosons are allowed to propagate in the bulk, while the Higgs sector is localized on or near the infra-red brane. These so-called Randall-Sundrum (RS) models have the potential to simultaneously explain the hierarchy problem and address the question of what causes the large hierarchies in the fermion sector of the Standard Model (SM). The Kaluza-Klein (KK) excitations of the bulk fields can significantly affect the loop-level processes considered in this thesis and, hence, could indirectly indicate the existence of warped extra dimensions. The analytical part of this thesis deals with the detailed calculation of three loop-induced processes in the RS models in question: the Higgs production process via gluon fusion, the Higgs decay into two photons, and the flavor-changing neutral current b → sγ. A comprehensive, five-dimensional (5D) analysis will show that the amplitudes of the Higgs processes can be expressed in terms of integrals over 5D propagators with the Higgs-boson profile along the extra dimension, which can be used for arbitrary models with a compact extra dimension. To this end, both the boson and fermion propagators in a warped 5D background are derived. It will be shown that the seemingly contradictory results for the gluon fusion amplitude in the literature can be traced back to two distinguishable, not smoothly-connected incarnations of the RS model. The investigation of the b → sγ transition is performed in the KK decomposed theory. It will be argued that summing up the entire KK tower leads to a finite result, which can be well approximated by a closed, analytical expression.rnIn the phenomenological part of this thesis, the analytic results of all relevant Higgs couplings in the RS models in question are compared with current and in particular future sensitivities of the Large Hadron Collider (LHC) and the planned International Linear Collider. The latest LHC Higgs data is then used to exclude significant portions of the parameter space of each RS scenario. The analysis will demonstrate that especially the loop-induced Higgs couplings are sensitive to KK particles of the custodial RS model with masses in the multi tera-electronvolt range. Finally, the effect of the RS model on three flavor observables associated with the b → sγ transition are examined. In particular, we study the branching ratio of the inclusive decay B → X_s γ

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Flachwassergleichungen (SWE) sind ein hyperbolisches System von Bilanzgleichungen, die adäquate Approximationen an groß-skalige Strömungen der Ozeane, Flüsse und der Atmosphäre liefern. Dabei werden Masse und Impuls erhalten. Wir unterscheiden zwei charakteristische Geschwindigkeiten: die Advektionsgeschwindigkeit, d.h. die Geschwindigkeit des Massentransports, und die Geschwindigkeit von Schwerewellen, d.h. die Geschwindigkeit der Oberflächenwellen, die Energie und Impuls tragen. Die Froude-Zahl ist eine Kennzahl und ist durch das Verhältnis der Referenzadvektionsgeschwindigkeit zu der Referenzgeschwindigkeit der Schwerewellen gegeben. Für die oben genannten Anwendungen ist sie typischerweise sehr klein, z.B. 0.01. Zeit-explizite Finite-Volume-Verfahren werden am öftersten zur numerischen Berechnung hyperbolischer Bilanzgleichungen benutzt. Daher muss die CFL-Stabilitätsbedingung eingehalten werden und das Zeitinkrement ist ungefähr proportional zu der Froude-Zahl. Deswegen entsteht bei kleinen Froude-Zahlen, etwa kleiner als 0.2, ein hoher Rechenaufwand. Ferner sind die numerischen Lösungen dissipativ. Es ist allgemein bekannt, dass die Lösungen der SWE gegen die Lösungen der Seegleichungen/ Froude-Zahl Null SWE für Froude-Zahl gegen Null konvergieren, falls adäquate Bedingungen erfüllt sind. In diesem Grenzwertprozess ändern die Gleichungen ihren Typ von hyperbolisch zu hyperbolisch.-elliptisch. Ferner kann bei kleinen Froude-Zahlen die Konvergenzordnung sinken oder das numerische Verfahren zusammenbrechen. Insbesondere wurde bei zeit-expliziten Verfahren falsches asymptotisches Verhalten (bzgl. der Froude-Zahl) beobachtet, das diese Effekte verursachen könnte.Ozeanographische und atmosphärische Strömungen sind typischerweise kleine Störungen eines unterliegenden Equilibriumzustandes. Wir möchten, dass numerische Verfahren für Bilanzgleichungen gewisse Equilibriumzustände exakt erhalten, sonst können künstliche Strömungen vom Verfahren erzeugt werden. Daher ist die Quelltermapproximation essentiell. Numerische Verfahren die Equilibriumzustände erhalten heißen ausbalanciert.rnrnIn der vorliegenden Arbeit spalten wir die SWE in einen steifen, linearen und einen nicht-steifen Teil, um die starke Einschränkung der Zeitschritte durch die CFL-Bedingung zu umgehen. Der steife Teil wird implizit und der nicht-steife explizit approximiert. Dazu verwenden wir IMEX (implicit-explicit) Runge-Kutta und IMEX Mehrschritt-Zeitdiskretisierungen. Die Raumdiskretisierung erfolgt mittels der Finite-Volumen-Methode. Der steife Teil wird mit Hilfe von finiter Differenzen oder au eine acht mehrdimensional Art und Weise approximniert. Zur mehrdimensionalen Approximation verwenden wir approximative Evolutionsoperatoren, die alle unendlich viele Informationsausbreitungsrichtungen berücksichtigen. Die expliziten Terme werden mit gewöhnlichen numerischen Flüssen approximiert. Daher erhalten wir eine Stabilitätsbedingung analog zu einer rein advektiven Strömung, d.h. das Zeitinkrement vergrößert um den Faktor Kehrwert der Froude-Zahl. Die in dieser Arbeit hergeleiteten Verfahren sind asymptotisch erhaltend und ausbalanciert. Die asymptotischer Erhaltung stellt sicher, dass numerische Lösung das "korrekte" asymptotische Verhalten bezüglich kleiner Froude-Zahlen besitzt. Wir präsentieren Verfahren erster und zweiter Ordnung. Numerische Resultate bestätigen die Konvergenzordnung, so wie Stabilität, Ausbalanciertheit und die asymptotische Erhaltung. Insbesondere beobachten wir bei machen Verfahren, dass die Konvergenzordnung fast unabhängig von der Froude-Zahl ist.