17 resultados para Electronic band structure


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Die causa finalis der vorliegenden Arbeit ist das Verständnis des Phasendiagramms von Wasserstoff bei ultrahohen Drücken, welche von nichtleitendem H2 bis hin zu metallischem H reichen. Da die Voraussetzungen für ultrahohen Druck im Labor schwer zu schaffen sind, bilden Computersimulationen ein wichtiges alternatives Untersuchungsinstrument. Allerdings sind solche Berechnungen eine große Herausforderung. Eines der größten Probleme ist die genaue Auswertung des Born-Oppenheimer Potentials, welches sowohl für die nichtleitende als auch für die metallische Phase geeignet sein muss. Außerdem muss es die starken Korrelationen berücksichtigen, die durch die kovalenten H2 Bindungen und die eventuellen Phasenübergänge hervorgerufen werden. Auf dieses Problem haben unsere Anstrengungen abgezielt. Im Kontext von Variationellem Monte Carlo (VMC) ist die Shadow Wave Function (SWF) eine sehr vielversprechende Option. Aufgrund ihrer Flexibilität sowohl lokalisierte als auch delokalisierte Systeme zu beschreiben sowie ihrer Fähigkeit Korrelationen hoher Ordnung zu berücksichtigen, ist sie ein idealer Kandidat für unsere Zwecke. Unglücklicherweise bringt ihre Formulierung ein Vorzeichenproblem mit sich, was die Anwendbarkeit limitiert. Nichtsdestotrotz ist es möglich diese Schwierigkeit zu umgehen indem man die Knotenstruktur a priori festlegt. Durch diesen Formalismus waren wir in der Lage die Beschreibung der Elektronenstruktur von Wasserstoff signifikant zu verbessern, was eine sehr vielversprechende Perspektive bietet. Während dieser Forschung haben wir also die Natur des Vorzeichenproblems untersucht, das sich auf die SWF auswirkt, und dabei ein tieferes Verständnis seines Ursprungs erlangt. Die vorliegende Arbeit ist in vier Kapitel unterteilt. Das erste Kapitel führt VMC und die SWF mit besonderer Ausrichtung auf fermionische Systeme ein. Kapitel 2 skizziert die Literatur über das Phasendiagramm von Wasserstoff bei ultrahohem Druck. Das dritte Kapitel präsentiert die Implementierungen unseres VMC Programms und die erhaltenen Ergebnisse. Zum Abschluss fasst Kapitel 4 unsere Bestrebungen zur Lösung des zur SWF zugehörigen Vorzeichenproblems zusammen.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt die Entwicklung und Verbesserung von linear skalierenden Algorithmen für Elektronenstruktur basierte Molekulardynamik. Molekulardynamik ist eine Methode zur Computersimulation des komplexen Zusammenspiels zwischen Atomen und Molekülen bei endlicher Temperatur. Ein entscheidender Vorteil dieser Methode ist ihre hohe Genauigkeit und Vorhersagekraft. Allerdings verhindert der Rechenaufwand, welcher grundsätzlich kubisch mit der Anzahl der Atome skaliert, die Anwendung auf große Systeme und lange Zeitskalen. Ausgehend von einem neuen Formalismus, basierend auf dem großkanonischen Potential und einer Faktorisierung der Dichtematrix, wird die Diagonalisierung der entsprechenden Hamiltonmatrix vermieden. Dieser nutzt aus, dass die Hamilton- und die Dichtematrix aufgrund von Lokalisierung dünn besetzt sind. Das reduziert den Rechenaufwand so, dass er linear mit der Systemgröße skaliert. Um seine Effizienz zu demonstrieren, wird der daraus entstehende Algorithmus auf ein System mit flüssigem Methan angewandt, das extremem Druck (etwa 100 GPa) und extremer Temperatur (2000 - 8000 K) ausgesetzt ist. In der Simulation dissoziiert Methan bei Temperaturen oberhalb von 4000 K. Die Bildung von sp²-gebundenem polymerischen Kohlenstoff wird beobachtet. Die Simulationen liefern keinen Hinweis auf die Entstehung von Diamant und wirken sich daher auf die bisherigen Planetenmodelle von Neptun und Uranus aus. Da das Umgehen der Diagonalisierung der Hamiltonmatrix die Inversion von Matrizen mit sich bringt, wird zusätzlich das Problem behandelt, eine (inverse) p-te Wurzel einer gegebenen Matrix zu berechnen. Dies resultiert in einer neuen Formel für symmetrisch positiv definite Matrizen. Sie verallgemeinert die Newton-Schulz Iteration, Altmans Formel für beschränkte und nicht singuläre Operatoren und Newtons Methode zur Berechnung von Nullstellen von Funktionen. Der Nachweis wird erbracht, dass die Konvergenzordnung immer mindestens quadratisch ist und adaptives Anpassen eines Parameters q in allen Fällen zu besseren Ergebnissen führt.