19 resultados para DNA damage checkpoint
Resumo:
Oxidative DNA-Schäden, wie 7,8-Dihydro-8-oxoguanin (8-oxoG), werden kontinuierlich in allen Zellen durch endogene und exogene Noxen gebildet. Ohne eine effektive Reparatur können DNA-Schäden nach erfolgter Replikation als Mutationen fixiert werden und somit die Kanzerogenese initiieren.rnUntersuchungsgegenstand dieser Arbeit war die Reparatur, vorrangig von oxidativen DNA-Schäden, in humanen Lymphozyten. Dabei sollte ebenfalls überprüft werden, inwiefern eine Aktivierung dieser Immunzellen, die u.a. zu einer Initiierung der Proliferation führt, modulierend auf die DNA-Reparatur wirkt. Für diese Untersuchungen wurden primäre Lymphozyten aus Buffy Coats isoliert. Eine Aktivierung von T Lymphozyten, welche physiologisch Antigen-vermittelt über den T-Zell-Rezeptor verläuft, wurde durch eine ex vivo Stimulation mit Phytohämagglutinin (PHA) nachgeahmt. Die Induktion oxidativer DNA-Basenmodifikationen erfolgte mit Hilfe des Photosensibilisators Acridinorange in Kombination mit sichtbarem Licht. Das Schadensausmaß sowie die Reparatur wurden mittels der Alkalischen Elution unter Nutzung der Reparaturendonuklease Fpg bestimmt.rnDie Ergebnisse zeigten, dass global keine Reparatur induzierter oxidativer DNA-Schäden in primären Lymphozyten stattfindet. Eine Aktivierung der Lymphozyten mittels PHA führte hingegen zu einer deutlichen Reduktion der induzierten DNA-Schäden innerhalb einer 24-stündigen Reparaturzeit. Diese verbesserte Reparatur konnte auf eine Steigerung der Transkription und somit eine erhöhte Proteinmenge von OGG1, welches die Reparatur von 8-oxoG DNA-Glykosylase initiiert, zurückgeführt werden. Weiterführende mechanistische Untersuchungen deuten darauf hin, dass der transkriptionellen Regulation von OGG1 eine Aktivierung der JNK-Signalkaskade zugrunde liegt. Als ein verantwortlicher Transkriptionsfaktor konnte NF-YA identifiziert werden. Dessen erhöhte Bindung am OGG1-Promotor in Folge einer PHA-Stimulation konnte durch eine JNK-Hemmung reduziert werden.rnDie Ergebnisse dieser Arbeit zeigen, dass eine Aktivierung von Lymphozyten, welche die Proliferation initiiert und dadurch mit dem Risiko für die Entstehung von Mutationen und malignen Entartungen verknüpft ist, gleichzeitig eine transkriptionelle Hochregulation von OGG1 bewirkt, die die Reparatur oxidativer DNA-Schäden sicherstellt. Die Fähigkeit zur Steigerung der DNA-Reparatur unter den gezeigten Bedingungen bietet den proliferierenden Zellen einen Schutzmechanismus zur Erhaltung ihrer genomischen Stabilität.rn
Resumo:
Angiotensin II induziert intrazellulär die Bildung reaktiver Sauerstoffspezies, welche DNA-Schäden erzeugen können. Um die Hypothese zu prüfen, dass durch Angiotensin II induzierte DNA-Schäden für die erhöhte Krebsinzidenz hypertensiver Menschen verantwortlich sind, wurde eine vierwöchige Behandlung von Mäusen mit Angiotensin II (0,6 μg/kg/min) durchgeführt. Mit der Alkalischen Elution wurden in Zellen aus verschiedenen Organen der Mäuse die Menge an DNA-Einzelstrangbrüchen und oxidativen DNA-Modifikationen bestimmt. In der Niere wurde außerdem mit dem BigBlue® Mutations-Assay die Entstehung von Mutationen analysiert. In keinem der analysierten Organe konnte eine Erhöhung der DNA-Schäden oder eine Erhöhung der Mutationsfrequenzen durch die Angiotensin II-Behandlung nachgewiesen werden. Die durchgeführten Untersuchungen geben somit keinen Hinweis auf eine DNA-schädigende und mutagene Wirkung von Angiotensin II.rnBei der Entstehung und dem Krankheitsverlauf von Arteriosklerose spielen reaktive Sauerstoffspezies ebenfalls eine noch nicht genau geklärte Rolle. Um zu ermitteln, ob oxidative DNA-Schäden die Entstehung der Arteriosklerose begünstigen, wurde die Endothelfunktion von Wildtyp- und reparaturdefizienten Ogg1-/--Mäusen verglichen. Entgegen der Vermutung, dass oxidative DNA-Modifikationen die Endothelfunktion verschlechtern, zeigen die Untersuchungen, dass Ogg1-/--Mäuse, die höhere Spiegel an oxidativen DNA-Modifikationen in ihrem Genom haben, eine signifikant bessere Endothelfunktion besitzen als Wildtyptiere. Dieser Befund weist auf eine neuartige, von der DNA-Reparatur unabhängige Funktion von OGG1 hin.rn
Resumo:
In dieser Arbeit sollte der Einfluss einer Überproduktion von humaner Superoxiddismutase 1 (hSOD1) auf die Spiegel der DNA-Schäden in verschiedenen Geweben von transgenen Mäusen untersucht werden. Tiere die eine Defizienz des Ogg1- und Csb- Proteins aufweisen und deshalb oxidative Purinmodifikationen nicht oder nur schwer reparieren können, akkumulieren 8-oxoG im Laufe ihres Lebens (Osterod, et al. 2001). Aus diesem Grund sind diese ein gutes Modell, um protektive Eigenschaften von Antioxidantien wie z.B. Substanzen oder Enzymen zu untersuchen. Fusser, et al. 2011 konnten beispielsweise zeigen, dass das pflanzliche Polyphenol Resveratrol die endogenen Spiegel an 8-oxoG sowie die spontanen Mutatiosraten im Lac I - Gen senken kann. Um den Einfluss von hSOD1 in vivo zu untersuchen, wurden in zwei Zuchtschritten 4 Mausgenotypen generiert, nämlich (Csb -/- Ogg1 -/- und Csb +/- Ogg1 +/- Mäuse jeweils mit ohne hSOD1 Überexpression). Diese wurden in verschiedenen Altersstufen auf die Basalspiegel an oxidativen Schäden (Einzelstrangbrüche und Fpg-sensitive Läsionen) in der Leber, der Niere und der Milz untersucht. Die Genotypen wurden zunächst charakterisiert und die hSOD1-Überexpression mittels qRT-PCR, Western Blot und Enzymaktivitätsbestimmung verifiziert. Es konnte an diesen Tieren erstmalig gezeigt werden, dass SOD die Generierung von DNA-Schäden in vivo mit zunehmendem Alter der Tiere senkt und dass deshalb Superoxid eine der reaktiven Sauerstoffspezies ist, die unter physiologischen Bedingungen für die DNA-Schäden verantwortlich ist. Außerdem kann ein möglicher toxischer Effekt der Überproduktion von SOD ausgeschlossen werden. Erhöhte Spiegel an oxidativen DNA-Schäden durch womöglich erhöhte Spiegel an H2O2 konnten in dieser Studie nicht beobachtet werden. Eine Messung der Genexpression anderer antioxidativer Enzyme wie Katalase, SOD2 und SOD3, GPX oder HO1 sind an diesem Effekt nicht beteiligt. Auch konnte kein Einfluss des redoxsensitiven Transkriptionsfaktors Nrf2 gezeigt werden. rnUm mögliche Quellen der für die oxidativ gebildeten DNA-Schäden verantwortlichen ROS zu identifizieren, wurde der Einfluss des Dopaminstoffwechsels untersucht. Während des Dopaminmetabolismus werden intrazellulär Reaktive Sauerstoffspezies (H2O2 und O2.-) gebildet und tragen sehr wahrscheinlich zur Entstehung von neurodegenerativen Erkrankungen wie Parkinson bei. In dem gängigen Parkinson-Zellkulturmodell SH-SY5Y konnte keine Erhöhung von oxidativen Schäden in nukleärer DNA nach Dopaminbehandlung nachgewiesen werden. Eine Überexpression der Dopaminmetabolisierenden Enzyme MAO-A und MAO-B zeigen bei niedrigen Dosen Dopamin eine leichte jedoch nicht signifikante Erhöhung der Fpg-sensitiven Modifikationen. Die Überproduktion des Dopamintransporters zeigte keinen Effekt nach Dopaminzugabe. Es kann geschlussfolgert werden, dass durch erhöhte MAO-A und MAO-B endogen ROS gebildet werden, die die Bildung Fpg-sensitiver Läsionen hervorrufen. Bei hohen Dosen und langer Inkubationszeit steht die Dopaminautoxidation, anschließende Neuromelaninbildung und als Konsequenz Apoptose im Vordergrund.rn
Resumo:
"Silent mating type information regulation 2 Type" 1 (SIRT1), das humane Homolog der NAD+-abhängigen Histondeacetylase Sir2 aus Hefe, besitzt Schlüsselfunktionen in der Regulation des Metabolismus, der Zellalterung und Apoptose. Letztere wird vor allem durch die Deacetylierung von p53 an Lys382 und der dadurch verringerten Transkription proapoptotischer Zielgene vermittelt. Im Rahmen der vorliegenden Arbeit wurde die SIRT1 Regulation im Zusammenhang mit der DNA-Schadensantwort untersucht.rnIn der Apoptoseregulation übernimmt die Serin/Threonin-Kinase "Homeodomain interacting protein kinase" 2 (HIPK2) eine zentrale Rolle und daher wurde die SIRT1 Modifikation und Regulation durch HIPK2 betrachtet. Durch Phosphorylierung des Tumorsuppressorproteins p53 an Ser46 aktiviert HIPK2 das Zielprotein und induziert die Transkription proapoptotischer Zielgene von p53. Es wurde beschrieben, dass HIPK2 nach DNA-Schädigung über einen bisher unbekannten Mechnismus die Acetylierung von p53 potenzieren kann.rnIn der vorliegenden Arbeit konnte gezeigt werden, dass SIRT1 von HIPK2 in vitro und in Zellen an Serin 27 und 682 phosphoryliert wird. Weiterhin ist die Interaktion von SIRT1 mit HIPK2 sowie die SIRT1 Phosphorylierung an Serin 682 durch DNA-schädigende Adriamycinbehandlung erhöht. Es gibt Hinweise, dass HIPK2 die Expression von SIRT1 reguliert, da HIPK2 RNA-Interferenz zur Erniedrigung der SIRT1 Protein- und mRNA-Mengen führt.rnEin weiterer interessanter Aspekt liegt in der Beobachtung, dass Ko-Expression von PML-IV, welches SIRT1 sowie HIPK2 in PML-Kernkörper rekrutiert, die SIRT1 Phosphorylierung an Serin 682 verstärkt. Phosphorylierung von SIRT1 an Serin 682 interferiert wiederum mit der SUMO-1 Modifikation, welche für die Lokalisation in PML-Kernkörpen wichtig ist.rnBemerkenswerterweise reduziert die DNA-schadendsinduzierte SIRT1 Phosphorylierung die Bindung des SIRT1 Ko-Aktivators AROS, beeinflusst aber nicht diejenige des Inhibitors DBC1. Dies führt zur Reduktion der enzymatischen Aktivität von SIRT1 und der darausfolgenden weniger effizienten Deacetylierung des Zielproteins p53.rnDurch die von mir in der vorliegenden Promotionsarbeit erzielten Ergebnisse konnte ein neuer molekularer Mechanismus entschlüsselt werden, welcher die durch HIPK2 modulierte Acetylierung von p53 und die daran anschließende Induktion der Apoptose beschreibt.rnHIPK2-vermittelte SIRT1 Phosphorylierung resultiert in einer verminderten Deacetylasefunktion von SIRT1 und führt so zu einer verstärkten acetylierungsinduzierten Expression proapoptotischer p53 Zielgene.