27 resultados para Data structures (Computer science)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vielen Industriezweigen, zum Beispiel in der Automobilindustrie, werden Digitale Versuchsmodelle (Digital MockUps) eingesetzt, um die Konstruktion und die Funktion eines Produkts am virtuellen Prototypen zu überprüfen. Ein Anwendungsfall ist dabei die Überprüfung von Sicherheitsabständen einzelner Bauteile, die sogenannte Abstandsanalyse. Ingenieure ermitteln dabei für bestimmte Bauteile, ob diese in ihrer Ruhelage sowie während einer Bewegung einen vorgegeben Sicherheitsabstand zu den umgebenden Bauteilen einhalten. Unterschreiten Bauteile den Sicherheitsabstand, so muss deren Form oder Lage verändert werden. Dazu ist es wichtig, die Bereiche der Bauteile, welche den Sicherhabstand verletzen, genau zu kennen. rnrnIn dieser Arbeit präsentieren wir eine Lösung zur Echtzeitberechnung aller den Sicherheitsabstand unterschreitenden Bereiche zwischen zwei geometrischen Objekten. Die Objekte sind dabei jeweils als Menge von Primitiven (z.B. Dreiecken) gegeben. Für jeden Zeitpunkt, in dem eine Transformation auf eines der Objekte angewendet wird, berechnen wir die Menge aller den Sicherheitsabstand unterschreitenden Primitive und bezeichnen diese als die Menge aller toleranzverletzenden Primitive. Wir präsentieren in dieser Arbeit eine ganzheitliche Lösung, welche sich in die folgenden drei großen Themengebiete unterteilen lässt.rnrnIm ersten Teil dieser Arbeit untersuchen wir Algorithmen, die für zwei Dreiecke überprüfen, ob diese toleranzverletzend sind. Hierfür präsentieren wir verschiedene Ansätze für Dreiecks-Dreiecks Toleranztests und zeigen, dass spezielle Toleranztests deutlich performanter sind als bisher verwendete Abstandsberechnungen. Im Fokus unserer Arbeit steht dabei die Entwicklung eines neuartigen Toleranztests, welcher im Dualraum arbeitet. In all unseren Benchmarks zur Berechnung aller toleranzverletzenden Primitive beweist sich unser Ansatz im dualen Raum immer als der Performanteste.rnrnDer zweite Teil dieser Arbeit befasst sich mit Datenstrukturen und Algorithmen zur Echtzeitberechnung aller toleranzverletzenden Primitive zwischen zwei geometrischen Objekten. Wir entwickeln eine kombinierte Datenstruktur, die sich aus einer flachen hierarchischen Datenstruktur und mehreren Uniform Grids zusammensetzt. Um effiziente Laufzeiten zu gewährleisten ist es vor allem wichtig, den geforderten Sicherheitsabstand sinnvoll im Design der Datenstrukturen und der Anfragealgorithmen zu beachten. Wir präsentieren hierzu Lösungen, die die Menge der zu testenden Paare von Primitiven schnell bestimmen. Darüber hinaus entwickeln wir Strategien, wie Primitive als toleranzverletzend erkannt werden können, ohne einen aufwändigen Primitiv-Primitiv Toleranztest zu berechnen. In unseren Benchmarks zeigen wir, dass wir mit unseren Lösungen in der Lage sind, in Echtzeit alle toleranzverletzenden Primitive zwischen zwei komplexen geometrischen Objekten, bestehend aus jeweils vielen hunderttausend Primitiven, zu berechnen. rnrnIm dritten Teil präsentieren wir eine neuartige, speicheroptimierte Datenstruktur zur Verwaltung der Zellinhalte der zuvor verwendeten Uniform Grids. Wir bezeichnen diese Datenstruktur als Shrubs. Bisherige Ansätze zur Speicheroptimierung von Uniform Grids beziehen sich vor allem auf Hashing Methoden. Diese reduzieren aber nicht den Speicherverbrauch der Zellinhalte. In unserem Anwendungsfall haben benachbarte Zellen oft ähnliche Inhalte. Unser Ansatz ist in der Lage, den Speicherbedarf der Zellinhalte eines Uniform Grids, basierend auf den redundanten Zellinhalten, verlustlos auf ein fünftel der bisherigen Größe zu komprimieren und zur Laufzeit zu dekomprimieren.rnrnAbschießend zeigen wir, wie unsere Lösung zur Berechnung aller toleranzverletzenden Primitive Anwendung in der Praxis finden kann. Neben der reinen Abstandsanalyse zeigen wir Anwendungen für verschiedene Problemstellungen der Pfadplanung.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Dissertation analysiert die Middleware- Technologien CORBA (Common Object Request Broker Architecture), COM/DCOM (Component Object Model/Distributed Component Object Model), J2EE (Java-2-Enterprise Edition) und Web Services (inklusive .NET) auf ihre Eignung bzgl. eng und lose gekoppelten verteilten Anwendungen. Zusätzlich werden primär für CORBA die dynamischen CORBA-Komponenten DII (Dynamic Invocation Interface), IFR (Interface Repository) und die generischen Datentypen Any und DynAny (dynamisches Any) im Detail untersucht. Ziel ist es, a. konkrete Aussagen über diese Komponenten zu erzielen, und festzustellen, in welchem Umfeld diese generischen Ansätze ihre Berechtigung finden. b. das zeitliche Verhalten der dynamischen Komponenten bzgl. der Informationsgewinnung über die unbekannten Objekte zu analysieren. c. das zeitliche Verhalten der dynamischen Komponenten bzgl. ihrer Kommunikation zu messen. d. das zeitliche Verhalten bzgl. der Erzeugung von generischen Datentypen und das Einstellen von Daten zu messen und zu analysieren. e. das zeitliche Verhalten bzgl. des Erstellens von unbekannten, d. h. nicht in IDL beschriebenen Datentypen zur Laufzeit zu messen und zu analysieren. f. die Vorzüge/Nachteile der dynamischen Komponenten aufzuzeigen, ihre Einsatzgebiete zu definieren und mit anderen Technologien wie COM/DCOM, J2EE und den Web Services bzgl. ihrer Möglichkeiten zu vergleichen. g. Aussagen bzgl. enger und loser Koppelung zu tätigen. CORBA wird als standardisierte und vollständige Verteilungsplattform ausgewählt, um die o. a. Problemstellungen zu untersuchen. Bzgl. seines dynamischen Verhaltens, das zum Zeitpunkt dieser Ausarbeitung noch nicht oder nur unzureichend untersucht wurde, sind CORBA und die Web Services richtungsweisend bzgl. a. Arbeiten mit unbekannten Objekten. Dies kann durchaus Implikationen bzgl. der Entwicklung intelligenter Softwareagenten haben. b. der Integration von Legacy-Applikationen. c. der Möglichkeiten im Zusammenhang mit B2B (Business-to-Business). Diese Problemstellungen beinhalten auch allgemeine Fragen zum Marshalling/Unmarshalling von Daten und welche Aufwände hierfür notwendig sind, ebenso wie allgemeine Aussagen bzgl. der Echtzeitfähigkeit von CORBA-basierten, verteilten Anwendungen. Die Ergebnisse werden anschließend auf andere Technologien wie COM/DCOM, J2EE und den Web Services, soweit es zulässig ist, übertragen. Die Vergleiche CORBA mit DCOM, CORBA mit J2EE und CORBA mit Web Services zeigen im Detail die Eignung dieser Technologien bzgl. loser und enger Koppelung. Desweiteren werden aus den erzielten Resultaten allgemeine Konzepte bzgl. der Architektur und der Optimierung der Kommunikation abgeleitet. Diese Empfehlungen gelten uneingeschränkt für alle untersuchten Technologien im Zusammenhang mit verteilter Verarbeitung.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die chronisch obstruktive Lungenerkrankung (engl. chronic obstructive pulmonary disease, COPD) ist ein Überbegriff für Erkrankungen, die zu Husten, Auswurf und Dyspnoe (Atemnot) in Ruhe oder Belastung führen - zu diesen werden die chronische Bronchitis und das Lungenemphysem gezählt. Das Fortschreiten der COPD ist eng verknüpft mit der Zunahme des Volumens der Wände kleiner Luftwege (Bronchien). Die hochauflösende Computertomographie (CT) gilt bei der Untersuchung der Morphologie der Lunge als Goldstandard (beste und zuverlässigste Methode in der Diagnostik). Möchte man Bronchien, eine in Annäherung tubuläre Struktur, in CT-Bildern vermessen, so stellt die geringe Größe der Bronchien im Vergleich zum Auflösungsvermögen eines klinischen Computertomographen ein großes Problem dar. In dieser Arbeit wird gezeigt wie aus konventionellen Röntgenaufnahmen CT-Bilder berechnet werden, wo die mathematischen und physikalischen Fehlerquellen im Bildentstehungsprozess liegen und wie man ein CT-System mittels Interpretation als lineares verschiebungsinvariantes System (engl. linear shift invariant systems, LSI System) mathematisch greifbar macht. Basierend auf der linearen Systemtheorie werden Möglichkeiten zur Beschreibung des Auflösungsvermögens bildgebender Verfahren hergeleitet. Es wird gezeigt wie man den Tracheobronchialbaum aus einem CT-Datensatz stabil segmentiert und mittels eines topologieerhaltenden 3-dimensionalen Skelettierungsalgorithmus in eine Skelettdarstellung und anschließend in einen kreisfreien Graphen überführt. Basierend auf der linearen System Theorie wird eine neue, vielversprechende, integral-basierte Methodik (IBM) zum Vermessen kleiner Strukturen in CT-Bildern vorgestellt. Zum Validieren der IBM-Resultate wurden verschiedene Messungen an einem Phantom, bestehend aus 10 unterschiedlichen Silikon Schläuchen, durchgeführt. Mit Hilfe der Skelett- und Graphendarstellung ist ein Vermessen des kompletten segmentierten Tracheobronchialbaums im 3-dimensionalen Raum möglich. Für 8 zweifach gescannte Schweine konnte eine gute Reproduzierbarkeit der IBM-Resultate nachgewiesen werden. In einer weiteren, mit IBM durchgeführten Studie konnte gezeigt werden, dass die durchschnittliche prozentuale Bronchialwandstärke in CT-Datensätzen von 16 Rauchern signifikant höher ist, als in Datensätzen von 15 Nichtrauchern. IBM läßt sich möglicherweise auch für Wanddickenbestimmungen bei Problemstellungen aus anderen Arbeitsgebieten benutzen - kann zumindest als Ideengeber dienen. Ein Artikel mit der Beschreibung der entwickelten Methodik und der damit erzielten Studienergebnisse wurde zur Publikation im Journal IEEE Transactions on Medical Imaging angenommen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data deduplication describes a class of approaches that reduce the storage capacity needed to store data or the amount of data that has to be transferred over a network. These approaches detect coarse-grained redundancies within a data set, e.g. a file system, and remove them.rnrnOne of the most important applications of data deduplication are backup storage systems where these approaches are able to reduce the storage requirements to a small fraction of the logical backup data size.rnThis thesis introduces multiple new extensions of so-called fingerprinting-based data deduplication. It starts with the presentation of a novel system design, which allows using a cluster of servers to perform exact data deduplication with small chunks in a scalable way.rnrnAfterwards, a combination of compression approaches for an important, but often over- looked, data structure in data deduplication systems, so called block and file recipes, is introduced. Using these compression approaches that exploit unique properties of data deduplication systems, the size of these recipes can be reduced by more than 92% in all investigated data sets. As file recipes can occupy a significant fraction of the overall storage capacity of data deduplication systems, the compression enables significant savings.rnrnA technique to increase the write throughput of data deduplication systems, based on the aforementioned block and file recipes, is introduced next. The novel Block Locality Caching (BLC) uses properties of block and file recipes to overcome the chunk lookup disk bottleneck of data deduplication systems. This chunk lookup disk bottleneck either limits the scalability or the throughput of data deduplication systems. The presented BLC overcomes the disk bottleneck more efficiently than existing approaches. Furthermore, it is shown that it is less prone to aging effects.rnrnFinally, it is investigated if large HPC storage systems inhibit redundancies that can be found by fingerprinting-based data deduplication. Over 3 PB of HPC storage data from different data sets have been analyzed. In most data sets, between 20 and 30% of the data can be classified as redundant. According to these results, future work in HPC storage systems should further investigate how data deduplication can be integrated into future HPC storage systems.rnrnThis thesis presents important novel work in different area of data deduplication re- search.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data sets describing the state of the earth's atmosphere are of great importance in the atmospheric sciences. Over the last decades, the quality and sheer amount of the available data increased significantly, resulting in a rising demand for new tools capable of handling and analysing these large, multidimensional sets of atmospheric data. The interdisciplinary work presented in this thesis covers the development and the application of practical software tools and efficient algorithms from the field of computer science, aiming at the goal of enabling atmospheric scientists to analyse and to gain new insights from these large data sets. For this purpose, our tools combine novel techniques with well-established methods from different areas such as scientific visualization and data segmentation. In this thesis, three practical tools are presented. Two of these tools are software systems (Insight and IWAL) for different types of processing and interactive visualization of data, the third tool is an efficient algorithm for data segmentation implemented as part of Insight.Insight is a toolkit for the interactive, three-dimensional visualization and processing of large sets of atmospheric data, originally developed as a testing environment for the novel segmentation algorithm. It provides a dynamic system for combining at runtime data from different sources, a variety of different data processing algorithms, and several visualization techniques. Its modular architecture and flexible scripting support led to additional applications of the software, from which two examples are presented: the usage of Insight as a WMS (web map service) server, and the automatic production of a sequence of images for the visualization of cyclone simulations. The core application of Insight is the provision of the novel segmentation algorithm for the efficient detection and tracking of 3D features in large sets of atmospheric data, as well as for the precise localization of the occurring genesis, lysis, merging and splitting events. Data segmentation usually leads to a significant reduction of the size of the considered data. This enables a practical visualization of the data, statistical analyses of the features and their events, and the manual or automatic detection of interesting situations for subsequent detailed investigation. The concepts of the novel algorithm, its technical realization, and several extensions for avoiding under- and over-segmentation are discussed. As example applications, this thesis covers the setup and the results of the segmentation of upper-tropospheric jet streams and cyclones as full 3D objects. Finally, IWAL is presented, which is a web application for providing an easy interactive access to meteorological data visualizations, primarily aimed at students. As a web application, the needs to retrieve all input data sets and to install and handle complex visualization tools on a local machine are avoided. The main challenge in the provision of customizable visualizations to large numbers of simultaneous users was to find an acceptable trade-off between the available visualization options and the performance of the application. Besides the implementational details, benchmarks and the results of a user survey are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die vorliegende Arbeit beschäftigt sich mit der Entwicklung eines Funktionsapproximators und dessen Verwendung in Verfahren zum Lernen von diskreten und kontinuierlichen Aktionen: 1. Ein allgemeiner Funktionsapproximator – Locally Weighted Interpolating Growing Neural Gas (LWIGNG) – wird auf Basis eines Wachsenden Neuralen Gases (GNG) entwickelt. Die topologische Nachbarschaft in der Neuronenstruktur wird verwendet, um zwischen benachbarten Neuronen zu interpolieren und durch lokale Gewichtung die Approximation zu berechnen. Die Leistungsfähigkeit des Ansatzes, insbesondere in Hinsicht auf sich verändernde Zielfunktionen und sich verändernde Eingabeverteilungen, wird in verschiedenen Experimenten unter Beweis gestellt. 2. Zum Lernen diskreter Aktionen wird das LWIGNG-Verfahren mit Q-Learning zur Q-LWIGNG-Methode verbunden. Dafür muss der zugrunde liegende GNG-Algorithmus abgeändert werden, da die Eingabedaten beim Aktionenlernen eine bestimmte Reihenfolge haben. Q-LWIGNG erzielt sehr gute Ergebnisse beim Stabbalance- und beim Mountain-Car-Problem und gute Ergebnisse beim Acrobot-Problem. 3. Zum Lernen kontinuierlicher Aktionen wird ein REINFORCE-Algorithmus mit LWIGNG zur ReinforceGNG-Methode verbunden. Dabei wird eine Actor-Critic-Architektur eingesetzt, um aus zeitverzögerten Belohnungen zu lernen. LWIGNG approximiert sowohl die Zustands-Wertefunktion als auch die Politik, die in Form von situationsabhängigen Parametern einer Normalverteilung repräsentiert wird. ReinforceGNG wird erfolgreich zum Lernen von Bewegungen für einen simulierten 2-rädrigen Roboter eingesetzt, der einen rollenden Ball unter bestimmten Bedingungen abfangen soll.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Aufgabenstellung, welche dieser Dissertation zugrunde liegt, lässt sich kurz als die Untersuchung von komponentenbasierten Konzepten zum Einsatz in der Softwareentwicklung durch Endanwender beschreiben. In den letzten 20 bis 30 Jahren hat sich das technische Umfeld, in dem ein Großteil der Arbeitnehmer seine täglichen Aufgaben verrichtet, grundlegend verändert. Der Computer, früher in Form eines Großrechners ausschließlich die Domäne von Spezialisten, ist nun ein selbstverständlicher Bestandteil der täglichen Arbeit. Der Umgang mit Anwendungsprogrammen, die dem Nutzer erlauben in einem gewissen Rahmen neue, eigene Funktionalität zu definieren, ist in vielen Bereichen so selbstverständlich, dass viele dieser Tätigkeiten nicht bewusst als Programmieren wahrgenommen werden. Da diese Nutzer nicht notwendigerweise in der Entwicklung von Software ausgebildet sind, benötigen sie entsprechende Unterstützung bei diesen Tätigkeiten. Dies macht deutlich, welche praktische Relevanz die Untersuchungen in diesem Bereich haben. Zur Erstellung eines Programmiersystems für Endanwender wird zunächst ein flexibler Anwendungsrahmen entwickelt, welcher sich als Basis zur Erstellung solcher Systeme eignet. In Softwareprojekten sind sich ändernde Anforderungen und daraus resultierende Notwendigkeiten ein wichtiger Aspekt. Dies wird im Entwurf des Frameworks durch Konzepte zur Bereitstellung von wieder verwendbarer Funktionalität durch das Framework und Möglichkeiten zur Anpassung und Erweiterung der vorhandenen Funktionalität berücksichtigt. Hier ist zum einen der Einsatz einer serviceorientierten Architektur innerhalb der Anwendung und zum anderen eine komponentenorientierte Variante des Kommando-Musters zu nennen. Zum anderen wird ein Konzept zur Kapselung von Endnutzerprogrammiermodellen in Komponenten erarbeitet. Dieser Ansatz ermöglicht es, unterschiedliche Modelle als Grundlage der entworfenen Entwicklungsumgebung zu verwenden. Im weiteren Verlauf der Arbeit wird ein Programmiermodell entworfen und unter Verwendung des zuvor genannten Frameworks implementiert. Damit dieses zur Nutzung durch Endanwender geeignet ist, ist eine Anhebung der zur Beschreibung eines Softwaresystems verwendeten Abstraktionsebene notwendig. Dies wird durch die Verwendung von Komponenten und einem nachrichtenbasierten Kompositionsmechanismus erreicht. Die vorgenommene Realisierung ist dabei noch nicht auf konkrete Anwendungsfamilien bezogen, diese Anpassungen erfolgen in einem weiteren Schritt für zwei unterschiedliche Anwendungsbereiche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer simulations play an ever growing role for the development of automotive products. Assembly simulation, as well as many other processes, are used systematically even before the first physical prototype of a vehicle is built in order to check whether particular components can be assembled easily or whether another part is in the way. Usually, this kind of simulation is limited to rigid bodies. However, a vehicle contains a multitude of flexible parts of various types: cables, hoses, carpets, seat surfaces, insulations, weatherstrips... Since most of the problems using these simulations concern one-dimensional components and since an intuitive tool for cable routing is still needed, we have chosen to concentrate on this category, which includes cables, hoses and wiring harnesses. In this thesis, we present a system for simulating one dimensional flexible parts such as cables or hoses. The modeling of bending and torsion follows the Cosserat model. For this purpose we use a generalized spring-mass system and describe its configuration by a carefully chosen set of coordinates. Gravity and contact forces as well as the forces responsible for length conservation are expressed in Cartesian coordinates. But bending and torsion effects can be dealt with more effectively by using quaternions to represent the orientation of the segments joining two neighboring mass points. This augmented system allows an easy formulation of all interactions with the best appropriate coordinate type and yields a strongly banded Hessian matrix. An energy minimizing process accounts for a solution exempt from the oscillations that are typical of spring-mass systems. The use of integral forces, similar to an integral controller, allows to enforce exactly the constraints. The whole system is numerically stable and can be solved at interactive frame rates. It is integrated in the DaimlerChrysler in-house Virtual Reality Software veo for use in applications such as cable routing and assembly simulation and has been well received by users. Parts of this work have been published at the ACM Solid and Physical Modeling Conference 2006 and have been selected for the special issue of the Computer-Aided-Design Journal to the conference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Arbeit behandelt das Problem der Skalierbarkeit von Reinforcement Lernen auf hochdimensionale und komplexe Aufgabenstellungen. Unter Reinforcement Lernen versteht man dabei eine auf approximativem Dynamischen Programmieren basierende Klasse von Lernverfahren, die speziell Anwendung in der Künstlichen Intelligenz findet und zur autonomen Steuerung simulierter Agenten oder realer Hardwareroboter in dynamischen und unwägbaren Umwelten genutzt werden kann. Dazu wird mittels Regression aus Stichproben eine Funktion bestimmt, die die Lösung einer "Optimalitätsgleichung" (Bellman) ist und aus der sich näherungsweise optimale Entscheidungen ableiten lassen. Eine große Hürde stellt dabei die Dimensionalität des Zustandsraums dar, die häufig hoch und daher traditionellen gitterbasierten Approximationsverfahren wenig zugänglich ist. Das Ziel dieser Arbeit ist es, Reinforcement Lernen durch nichtparametrisierte Funktionsapproximation (genauer, Regularisierungsnetze) auf -- im Prinzip beliebig -- hochdimensionale Probleme anwendbar zu machen. Regularisierungsnetze sind eine Verallgemeinerung von gewöhnlichen Basisfunktionsnetzen, die die gesuchte Lösung durch die Daten parametrisieren, wodurch die explizite Wahl von Knoten/Basisfunktionen entfällt und so bei hochdimensionalen Eingaben der "Fluch der Dimension" umgangen werden kann. Gleichzeitig sind Regularisierungsnetze aber auch lineare Approximatoren, die technisch einfach handhabbar sind und für die die bestehenden Konvergenzaussagen von Reinforcement Lernen Gültigkeit behalten (anders als etwa bei Feed-Forward Neuronalen Netzen). Allen diesen theoretischen Vorteilen gegenüber steht allerdings ein sehr praktisches Problem: der Rechenaufwand bei der Verwendung von Regularisierungsnetzen skaliert von Natur aus wie O(n**3), wobei n die Anzahl der Daten ist. Das ist besonders deswegen problematisch, weil bei Reinforcement Lernen der Lernprozeß online erfolgt -- die Stichproben werden von einem Agenten/Roboter erzeugt, während er mit der Umwelt interagiert. Anpassungen an der Lösung müssen daher sofort und mit wenig Rechenaufwand vorgenommen werden. Der Beitrag dieser Arbeit gliedert sich daher in zwei Teile: Im ersten Teil der Arbeit formulieren wir für Regularisierungsnetze einen effizienten Lernalgorithmus zum Lösen allgemeiner Regressionsaufgaben, der speziell auf die Anforderungen von Online-Lernen zugeschnitten ist. Unser Ansatz basiert auf der Vorgehensweise von Recursive Least-Squares, kann aber mit konstantem Zeitaufwand nicht nur neue Daten sondern auch neue Basisfunktionen in das bestehende Modell einfügen. Ermöglicht wird das durch die "Subset of Regressors" Approximation, wodurch der Kern durch eine stark reduzierte Auswahl von Trainingsdaten approximiert wird, und einer gierigen Auswahlwahlprozedur, die diese Basiselemente direkt aus dem Datenstrom zur Laufzeit selektiert. Im zweiten Teil übertragen wir diesen Algorithmus auf approximative Politik-Evaluation mittels Least-Squares basiertem Temporal-Difference Lernen, und integrieren diesen Baustein in ein Gesamtsystem zum autonomen Lernen von optimalem Verhalten. Insgesamt entwickeln wir ein in hohem Maße dateneffizientes Verfahren, das insbesondere für Lernprobleme aus der Robotik mit kontinuierlichen und hochdimensionalen Zustandsräumen sowie stochastischen Zustandsübergängen geeignet ist. Dabei sind wir nicht auf ein Modell der Umwelt angewiesen, arbeiten weitestgehend unabhängig von der Dimension des Zustandsraums, erzielen Konvergenz bereits mit relativ wenigen Agent-Umwelt Interaktionen, und können dank des effizienten Online-Algorithmus auch im Kontext zeitkritischer Echtzeitanwendungen operieren. Wir demonstrieren die Leistungsfähigkeit unseres Ansatzes anhand von zwei realistischen und komplexen Anwendungsbeispielen: dem Problem RoboCup-Keepaway, sowie der Steuerung eines (simulierten) Oktopus-Tentakels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Präsentiert wird ein vollständiger, exakter und effizienter Algorithmus zur Berechnung des Nachbarschaftsgraphen eines Arrangements von Quadriken (Algebraische Flächen vom Grad 2). Dies ist ein wichtiger Schritt auf dem Weg zur Berechnung des vollen 3D Arrangements. Dabei greifen wir auf eine bereits existierende Implementierung zur Berechnung der exakten Parametrisierung der Schnittkurve von zwei Quadriken zurück. Somit ist es möglich, die exakten Parameterwerte der Schnittpunkte zu bestimmen, diese entlang der Kurven zu sortieren und den Nachbarschaftsgraphen zu berechnen. Wir bezeichnen unsere Implementierung als vollständig, da sie auch die Behandlung aller Sonderfälle wie singulärer oder tangentialer Schnittpunkte einschließt. Sie ist exakt, da immer das mathematisch korrekte Ergebnis berechnet wird. Und schließlich bezeichnen wir unsere Implementierung als effizient, da sie im Vergleich mit dem einzigen bisher implementierten Ansatz gut abschneidet. Implementiert wurde unser Ansatz im Rahmen des Projektes EXACUS. Das zentrale Ziel von EXACUS ist es, einen Prototypen eines zuverlässigen und leistungsfähigen CAD Geometriekerns zu entwickeln. Obwohl wir das Design unserer Bibliothek als prototypisch bezeichnen, legen wir dennoch größten Wert auf Vollständigkeit, Exaktheit, Effizienz, Dokumentation und Wiederverwendbarkeit. Über den eigentlich Beitrag zu EXACUS hinaus, hatte der hier vorgestellte Ansatz durch seine besonderen Anforderungen auch wesentlichen Einfluss auf grundlegende Teile von EXACUS. Im Besonderen hat diese Arbeit zur generischen Unterstützung der Zahlentypen und der Verwendung modularer Methoden innerhalb von EXACUS beigetragen. Im Rahmen der derzeitigen Integration von EXACUS in CGAL wurden diese Teile bereits erfolgreich in ausgereifte CGAL Pakete weiterentwickelt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present new algorithms to approximate the discrete volume of a polyhedral geometry using boxes defined by the US standard SAE J1100. This problem is NP-hard and has its main application in the car design process. The algorithms produce maximum weighted independent sets on a so-called conflict graph for a discretisation of the geometry. We present a framework to eliminate a large portion of the vertices of a graph without affecting the quality of the optimal solution. Using this framework we are also able to define the conflict graph without the use of a discretisation. For the solution of the maximum weighted independent set problem we designed an enumeration scheme which uses the restrictions of the SAE J1100 standard for an efficient upper bound computation. We evaluate the packing algorithms according to the solution quality compared to manually derived results. Finally, we compare our enumeration scheme to several other exact algorithms in terms of their runtime. Grid-based packings either tend to be not tight or have intersections between boxes. We therefore present an algorithm which can compute box packings with arbitrary placements and fixed orientations. In this algorithm we make use of approximate Minkowski Sums, computed by uniting many axis-oriented equal boxes. We developed an algorithm which computes the union of equal axis-oriented boxes efficiently. This algorithm also maintains the Minkowski Sums throughout the packing process. We also extend these algorithms for packing arbitrary objects in fixed orientations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Except the article forming the main content most HTML documents on the WWW contain additional contents such as navigation menus, design elements or commercial banners. In the context of several applications it is necessary to draw the distinction between main and additional content automatically. Content extraction and template detection are the two approaches to solve this task. This thesis gives an extensive overview of existing algorithms from both areas. It contributes an objective way to measure and evaluate the performance of content extraction algorithms under different aspects. These evaluation measures allow to draw the first objective comparison of existing extraction solutions. The newly introduced content code blurring algorithm overcomes several drawbacks of previous approaches and proves to be the best content extraction algorithm at the moment. An analysis of methods to cluster web documents according to their underlying templates is the third major contribution of this thesis. In combination with a localised crawling process this clustering analysis can be used to automatically create sets of training documents for template detection algorithms. As the whole process can be automated it allows to perform template detection on a single document, thereby combining the advantages of single and multi document algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis provides efficient and robust algorithms for the computation of the intersection curve between a torus and a simple surface (e.g. a plane, a natural quadric or another torus), based on algebraic and numeric methods. The algebraic part includes the classification of the topological type of the intersection curve and the detection of degenerate situations like embedded conic sections and singularities. Moreover, reference points for each connected intersection curve component are determined. The required computations are realised efficiently by solving quartic polynomials at most and exactly by using exact arithmetic. The numeric part includes algorithms for the tracing of each intersection curve component, starting from the previously computed reference points. Using interval arithmetic, accidental incorrectness like jumping between branches or the skipping of parts are prevented. Furthermore, the environments of singularities are correctly treated. Our algorithms are complete in the sense that any kind of input can be handled including degenerate and singular configurations. They are verified, since the results are topologically correct and approximate the real intersection curve up to any arbitrary given error bound. The algorithms are robust, since no human intervention is required and they are efficient in the way that the treatment of algebraic equations of high degree is avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Forschungsgebiet der Künstlichen Intelligenz, insbesondere im Bereich des maschinellen Lernens, hat sich eine ganze Reihe von Verfahren etabliert, die von biologischen Vorbildern inspiriert sind. Die prominentesten Vertreter derartiger Verfahren sind zum einen Evolutionäre Algorithmen, zum anderen Künstliche Neuronale Netze. Die vorliegende Arbeit befasst sich mit der Entwicklung eines Systems zum maschinellen Lernen, das Charakteristika beider Paradigmen in sich vereint: Das Hybride Lernende Klassifizierende System (HCS) wird basierend auf dem reellwertig kodierten eXtended Learning Classifier System (XCS), das als Lernmechanismus einen Genetischen Algorithmus enthält, und dem Wachsenden Neuralen Gas (GNG) entwickelt. Wie das XCS evolviert auch das HCS mit Hilfe eines Genetischen Algorithmus eine Population von Klassifizierern - das sind Regeln der Form [WENN Bedingung DANN Aktion], wobei die Bedingung angibt, in welchem Bereich des Zustandsraumes eines Lernproblems ein Klassifizierer anwendbar ist. Beim XCS spezifiziert die Bedingung in der Regel einen achsenparallelen Hyperquader, was oftmals keine angemessene Unterteilung des Zustandsraumes erlaubt. Beim HCS hingegen werden die Bedingungen der Klassifizierer durch Gewichtsvektoren beschrieben, wie die Neuronen des GNG sie besitzen. Jeder Klassifizierer ist anwendbar in seiner Zelle der durch die Population des HCS induzierten Voronoizerlegung des Zustandsraumes, dieser kann also flexibler unterteilt werden als beim XCS. Die Verwendung von Gewichtsvektoren ermöglicht ferner, einen vom Neuronenadaptationsverfahren des GNG abgeleiteten Mechanismus als zweites Lernverfahren neben dem Genetischen Algorithmus einzusetzen. Während das Lernen beim XCS rein evolutionär erfolgt, also nur durch Erzeugen neuer Klassifizierer, ermöglicht dies dem HCS, bereits vorhandene Klassifizierer anzupassen und zu verbessern. Zur Evaluation des HCS werden mit diesem verschiedene Lern-Experimente durchgeführt. Die Leistungsfähigkeit des Ansatzes wird in einer Reihe von Lernproblemen aus den Bereichen der Klassifikation, der Funktionsapproximation und des Lernens von Aktionen in einer interaktiven Lernumgebung unter Beweis gestellt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of linear programming in various areas has increased with the significant improvement of specialized solvers. Linear programs are used as such to model practical problems, or as subroutines in algorithms such as formal proofs or branch-and-cut frameworks. In many situations a certified answer is needed, for example the guarantee that the linear program is feasible or infeasible, or a provably safe bound on its objective value. Most of the available solvers work with floating-point arithmetic and are thus subject to its shortcomings such as rounding errors or underflow, therefore they can deliver incorrect answers. While adequate for some applications, this is unacceptable for critical applications like flight controlling or nuclear plant management due to the potential catastrophic consequences. We propose a method that gives a certified answer whether a linear program is feasible or infeasible, or returns unknown'. The advantage of our method is that it is reasonably fast and rarely answers unknown'. It works by computing a safe solution that is in some way the best possible in the relative interior of the feasible set. To certify the relative interior, we employ exact arithmetic, whose use is nevertheless limited in general to critical places, allowing us to rnremain computationally efficient. Moreover, when certain conditions are fulfilled, our method is able to deliver a provable bound on the objective value of the linear program. We test our algorithm on typical benchmark sets and obtain higher rates of success compared to previous approaches for this problem, while keeping the running times acceptably small. The computed objective value bounds are in most of the cases very close to the known exact objective values. We prove the usability of the method we developed by additionally employing a variant of it in a different scenario, namely to improve the results of a Satisfiability Modulo Theories solver. Our method is used as a black box in the nodes of a branch-and-bound tree to implement conflict learning based on the certificate of infeasibility for linear programs consisting of subsets of linear constraints. The generated conflict clauses are in general small and give good rnprospects for reducing the search space. Compared to other methods we obtain significant improvements in the running time, especially on the large instances.