2 resultados para hierarchical regression analysis
em AMS Tesi di Laurea - Alm@DL - Universit
Resumo:
Advancements in technology have enabled increasingly sophisticated automation to be introduced into the flight decks of modern aircraft. Generally, this automation was added to accomplish worthy objectives such as reducing flight crew workload, adding additional capability, or increasing fuel economy. Automation is necessary due to the fact that not all of the functions required for mission accomplishment in today’s complex aircraft are within the capabilities of the unaided human operator, who lacks the sensory capacity to detect much of the information required for flight. To a large extent, these objectives have been achieved. Nevertheless, despite all the benefits from the increasing amounts of highly reliable automation, vulnerabilities do exist in flight crew management of automation and Situation Awareness (SA). Issues associated with flight crew management of automation include: • Pilot understanding of automation’s capabilities, limitations, modes, and operating principles and techniques. • Differing pilot decisions about the appropriate automation level to use or whether to turn automation on or off when they get into unusual or emergency situations. • Human-Machine Interfaces (HMIs) are not always easy to use, and this aspect could be problematic when pilots experience high workload situations. • Complex automation interfaces, large differences in automation philosophy and implementation among different aircraft types, and inadequate training also contribute to deficiencies in flight crew understanding of automation.
Resumo:
The cerebral cortex presents self-similarity in a proper interval of spatial scales, a property typical of natural objects exhibiting fractal geometry. Its complexity therefore can be characterized by the value of its fractal dimension (FD). In the computation of this metric, it has usually been employed a frequentist approach to probability, with point estimator methods yielding only the optimal values of the FD. In our study, we aimed at retrieving a more complete evaluation of the FD by utilizing a Bayesian model for the linear regression analysis of the box-counting algorithm. We used T1-weighted MRI data of 86 healthy subjects (age 44.2 ± 17.1 years, mean ± standard deviation, 48% males) in order to gain insights into the confidence of our measure and investigate the relationship between mean Bayesian FD and age. Our approach yielded a stronger and significant (P < .001) correlation between mean Bayesian FD and age as compared to the previous implementation. Thus, our results make us suppose that the Bayesian FD is a more truthful estimation for the fractal dimension of the cerebral cortex compared to the frequentist FD.