4 resultados para experimental visual perception
em AMS Tesi di Laurea - Alm@DL - Universit
Resumo:
Our goal in this thesis is to provide a result of existence of the degenerate non-linear, non-divergence PDE which describes the mean curvature flow in the Lie group SE(2) equipped with a sub-Riemannian metric. The research is motivated by problems of visual completion and models of the visual cortex.
Resumo:
Without a doubt, one of the biggest changes that affected XXth century art is the introduction of words into paintings and, in more recent years, in installations. For centuries, if words were part of a visual composition, they functioned as reference; strictly speaking, they were used as a guideline for a better perception of the subject represented. With the developments of the XXth century, words became a very important part of the visual composition, and sometimes embodied the composition itself. About this topic, American art critic and collector Russell Bowman wrote an interesting article called Words and images: A persistent paradox, in which he examines the American and the European art of the XXth century in almost its entirety, dividing it up in six “categories of intention”. The aforementioned categories are not based on the art history timeline, but on the role that language played for specific artists or movements. Taking inspiration from Bowman's article, this paper is structured in three chapters, respectively: words in juxtaposition and free association, words as means of exploration of language structures, and words as means for political and personal messages. The purpose of this paper is therefore to reflect on the role of language in contemporary art and on the way it has changed from artist to artist.
Resumo:
In this thesis, we aim to discuss a simple mathematical model for the edge detection mechanism and the boundary completion problem in the human brain in a differential geometry framework. We describe the columnar structure of the primary visual cortex as the fiber bundle R2 × S1, the orientation bundle, and by introducing a first vector field on it, explain the edge detection process. Edges are detected through a lift from the domain in R2 into the manifold R2 × S1 and are horizontal to a completely non-integrable distribution. Therefore, we can construct a subriemannian structure on the manifold R2 × S1, through which we retrieve perceived smooth contours as subriemannian geodesics, solutions to Hamilton’s equations. To do so, in the first chapter, we illustrate the functioning of the most fundamental structures of the early visual system in the brain, from the retina to the primary visual cortex. We proceed with introducing the necessary concepts of differential and subriemannian geometry in chapters two and three. We finally implement our model in chapter four, where we conclude, comparing our results with the experimental findings of Heyes, Fields, and Hess on the existence of an association field.
Resumo:
In the framework of the energy transition, the acquisition of proper knowledge of fundamental aspects characterizing the use of alternative fuels is paramount as well as the development of optimized know-how and technologies. In this sense, the use of hydrogen has been indicated as a promising route for decarbonization at the end-users stage in the energy supply chain. However, the elevated reactivity and the low-density at atmospheric conditions of hydrogen pose new challenges. Among the others, the dilution of hydrogen with carbon dioxide from carbon capture and storage systems represents a possible route. However, the interactions between these species have been poorly studied so far. For these reasons, this thesis, in collaboration between the University of Bologna and Technische Universität Bergakademie of Freiberg in Saxony (Germany), investigates the laminar flame of hydrogen-based premixed gas with the dilution of carbon dioxide. An experimental system, called a heat flux burner, was adopted ad different operating conditions. The presence of the cellularity phenomenon, forming the so-called cellular flame, was observed and analysed. Theoretical and visual methods have allowed for the characterization of the investigated flames, opening new alternatives for sustainable energy production via hydrogen transformation.