6 resultados para evaluation algorithm

em AMS Tesi di Laurea - Alm@DL - Universit


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Il presente lavoro di tesi è stato svolto presso il servizio di Fisica Sanitaria del Policlinico Sant'Orsola-Malpighi di Bologna. Lo studio si è concentrato sul confronto tra le tecniche di ricostruzione standard (Filtered Back Projection, FBP) e quelle iterative in Tomografia Computerizzata. Il lavoro è stato diviso in due parti: nella prima è stata analizzata la qualità delle immagini acquisite con una CT multislice (iCT 128, sistema Philips) utilizzando sia l'algoritmo FBP sia quello iterativo (nel nostro caso iDose4). Per valutare la qualità delle immagini sono stati analizzati i seguenti parametri: il Noise Power Spectrum (NPS), la Modulation Transfer Function (MTF) e il rapporto contrasto-rumore (CNR). Le prime due grandezze sono state studiate effettuando misure su un fantoccio fornito dalla ditta costruttrice, che simulava la parte body e la parte head, con due cilindri di 32 e 20 cm rispettivamente. Le misure confermano la riduzione del rumore ma in maniera differente per i diversi filtri di convoluzione utilizzati. Lo studio dell'MTF invece ha rivelato che l'utilizzo delle tecniche standard e iterative non cambia la risoluzione spaziale; infatti gli andamenti ottenuti sono perfettamente identici (a parte le differenze intrinseche nei filtri di convoluzione), a differenza di quanto dichiarato dalla ditta. Per l'analisi del CNR sono stati utilizzati due fantocci; il primo, chiamato Catphan 600 è il fantoccio utilizzato per caratterizzare i sistemi CT. Il secondo, chiamato Cirs 061 ha al suo interno degli inserti che simulano la presenza di lesioni con densità tipiche del distretto addominale. Lo studio effettuato ha evidenziato che, per entrambi i fantocci, il rapporto contrasto-rumore aumenta se si utilizza la tecnica di ricostruzione iterativa. La seconda parte del lavoro di tesi è stata quella di effettuare una valutazione della riduzione della dose prendendo in considerazione diversi protocolli utilizzati nella pratica clinica, si sono analizzati un alto numero di esami e si sono calcolati i valori medi di CTDI e DLP su un campione di esame con FBP e con iDose4. I risultati mostrano che i valori ricavati con l'utilizzo dell'algoritmo iterativo sono al di sotto dei valori DLR nazionali di riferimento e di quelli che non usano i sistemi iterativi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex networks analysis is a very popular topic in computer science. Unfortunately this networks, extracted from different contexts, are usually very large and the analysis may be very complicated: computation of metrics on these structures could be very complex. Among all metrics we analyse the extraction of subnetworks called communities: they are groups of nodes that probably play the same role within the whole structure. Communities extraction is an interesting operation in many different fields (biology, economics,...). In this work we present a parallel community detection algorithm that can operate on networks with huge number of nodes and edges. After an introduction to graph theory and high performance computing, we will explain our design strategies and our implementation. Then, we will show some performance evaluation made on a distributed memory architectures i.e. the supercomputer IBM-BlueGene/Q "Fermi" at the CINECA supercomputing center, Italy, and we will comment our results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis I describe eight new stereo matching algorithms that perform the cost-aggregation step using a guided filter with a confidence map as guidance image, and share the structure of a linear stereo matching algorithm. The results of the execution of the proposed algorithms on four pictures from the Middlebury dataset are shown as well. Finally, based on these results, a ranking of the proposed algorithms is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digital Breast Tomosynthesis (DBT) is an advanced mammography technique based on the reconstruction of a pseudo-volumetric image. To date, image quality represents the most deficient section of DBT quality control protocols. In fact, related tests are not yet characterized by either action levels or typical values. This thesis work focuses on the evaluation of one aspect of image quality: the z-resolution. The latter is studied in terms of Artifact Spread Function (ASF), a function that describes the signal spread of a detail along the reconstructed focal planes. To quantify the ASF numerically, its Full Width at Half Maximum (FWHM) is calculated and used as a representative index of z-resolution. Experimental measurements were acquired in 24 DBT systems, of 7 different models, currently in use in 20 hospital facilities in Italy. The analysis, performed on the clinical reconstructed images, of 5 different commercial phantoms, lead to the identification of characteristic FWHM values for each type of DBT system. The ASF clearly showed a dependence on the size of the detail, providing higher FWHM values for larger objects. The z-resolution was found to be positively influenced by the acquisition angle: Fujifilm sistematically showed wider ASF profiles in ST mode (15°) than in HR mode (40°). However, no clear relationship was found between angular range and ASF, among different DBT systems, due to the influence of the peculiarities of each reconstruction algorithm. The experimental approach shown in this thesis work can be proposed as a z-resolution quality control test procedure. Contextually, the values found could be used as a starting point for identifying typical values to be included in the test, in a DBT protocol. Clearly, a statistically significant number of images is needed to do this. The equipment involved in this work is located in hospitals and is not available for research purposes, so only a limited amount of data was acquired and processed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increase in load demand for various sectors, protection and safety of the network are key factors that have to be taken into consideration over the electric grid and distribution network. A phasor Measuring unit is an Intelligent electronics device that collects the data in the form of a real-time synchrophasor with a precise time tag using GPS (Global positioning system) and transfers the data to the grid command to monitor and assess the data. The measurements made by PMU have to be very precise to protect the relays and measuring equipment according to the IEEE 60255-118-1(2018). As a device PMU is very expensive to research and develop new functionalities there is a need to find an alternative to working with. Hence many open source virtual libraries are available to replicate the exact function of PMU in the virtual environment(Software) to continue the research on multiple objectives, providing the very least error results when verified. In this thesis, I executed performance and compliance verification of the virtual PMU which was developed using the I-DFT (Interpolated Discrete Fourier transforms) C-class algorithm in MATLAB. In this thesis, a test environment has been developed in MATLAB and tested the virtually developed PMU on both steady state and dynamic state for verifying the latest standard compliance(IEEE-60255-118-1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The comfort level of the seat has a major effect on the usage of a vehicle; thus, car manufacturers have been working on elevating car seat comfort as much as possible. However, still, the testing and evaluation of comfort are done using exhaustive trial and error testing and evaluation of data. In this thesis, we resort to machine learning and Artificial Neural Networks (ANN) to develop a fully automated approach. Even though this approach has its advantages in minimizing time and using a large set of data, it takes away the degree of freedom of the engineer on making decisions. The focus of this study is on filling the gap in a two-step comfort level evaluation which used pressure mapping with body regions to evaluate the average pressure supported by specific body parts and the Self-Assessment Exam (SAE) questions on evaluation of the person’s interest. This study has created a machine learning algorithm that works on giving a degree of freedom to the engineer in making a decision when mapping pressure values with body regions using ANN. The mapping is done with 92% accuracy and with the help of a Graphical User Interface (GUI) that facilitates the process during the testing time of comfort level evaluation of the car seat, which decreases the duration of the test analysis from days to hours.