3 resultados para Obstacle Detection
em AMS Tesi di Laurea - Alm@DL - Universit
Resumo:
Il lavoro di tesi svolto riguarda lo sviluppo e la sperimentazione di un primo prototipo di sistema per l’obstacle detection e collision avoidance, capace di identificare un ostacolo e inibire i comandi del pilota in modo da evitare collisioni.
Resumo:
This thesis project aims to the development of an algorithm for the obstacle detection and the interaction between the safety areas of an Automated Guided Vehicles (AGV) and a Point Cloud derived map inside the context of a CAD software. The first part of the project focuses on the implementation of an algorithm for the clipping of general polygons, with which has been possible to: construct the safety areas polygon, derive the sweep of this areas along the navigation path performing a union and detect the intersections with line or polygon representing the obstacles. The second part is about the construction of a map in terms of geometric entities (lines and polygons) starting from a point cloud given by the 3D scan of the environment. The point cloud is processed using: filters, clustering algorithms and concave/convex hull derived algorithms in order to extract line and polygon entities representing obstacles. Finally, the last part aims to use the a priori knowledge of possible obstacle detections on a given segment, to predict the behavior of the AGV and use this prediction to optimize the choice of the vehicle's assigned velocity in that segment, minimizing the travel time.
Resumo:
Nowadays, the development of intelligent and autonomous vehicles used to perform agricultural activities is essential to improve quantity and quality of agricultural productions. Moreover, with automation techniques it is possible to reduce the usage of agrochemicals and minimize the pollution. The University of Bologna is developing an innovative system for orchard management called ORTO (Orchard Rapid Transportation System). This system involves an autonomous electric vehicle capable to perform agricultural activities inside an orchard structure. The vehicle is equipped with an implement capable to perform different tasks. The purpose of this thesis project is to control the vehicle and the implement to perform an inter-row grass mowing. This kind of task requires a synchronized motion between the traction motors and the implement motors. A motion control system has been developed to generate trajectories and manage their synchronization. Two main trajectories type have been used: a five order polynomial trajectory and a trapezoidal trajectory. These two kinds of trajectories have been chosen in order to perform a uniform grass mowing, paying a particular attention to the constrains of the system. To synchronize the motions, the electronic cams approach has been adopted. A master profile has been generated and all the trajectories have been linked to the master motion. Moreover, a safety system has been developed. The aim of this system is firstly to improve the safety during the motion, furthermore it allows to manage obstacle detection and avoidance. Using some particular techniques obstacles can be detected and recovery action can be performed to overcome the problem. Once the measured force reaches the predefined force threshold, then the vehicle stops immediately its motion. The whole project has been developed by employing Matlab and Simulink. Eventually, the software has been translated into C code and executed on the TI Lauchpad XL board.