4 resultados para COMPACTIFICATION.
em AMS Tesi di Laurea - Alm@DL - Universit
Resumo:
Ho studiato la possibilità di soluzione per il problema cosmologico dei moduli (CMP) presente a causa della compattificazione delle dimensioni extra tramite un periodo di inflazione a basse energie (Thermal Inflation). L'elaborato consta di cinque capitoli. Il primo introduce il lettore alla problematica dei moduli partendo dalla teoria Kaluza-Klein. Il secondo riguarda interamente il CMP e altri problemi cosmologici associati ai moduli. Nel terzo viene descritta la thermal inflation e le condizioni di funzionamento. Nel quarto capitolo viene preso in esame il problema di stabilizzazione dei moduli nella teoria di stringa tipo IIB: vengono descritti sia il meccanismo KKTL che il LVS. L'ultimo capitolo consiste nel calcolo della diluizione dei moduli, enunciata prima in un contesto generale e infine applicata al LVS, tramite la thermal inflation. Viene altresì presa in esame la possibilità di due epoche di thermal inflation, al fine di ottenere una diluizione più efficiente dei moduli. In LVS sono presenti due moduli, differenti per massa e vita media. Il più leggero è soggetto al CMP e si trova che, anche dopo due periodi di thermal inflation vi è ancora un numero eccessivo di tali campi, in quanto se da un lato la thermal inflation ne diliusca la densità iniziale, dall'altro ne causa una forte riproduzione, dovuta essenzialmente alle caratteristiche del modulo
Resumo:
The first chapter of this work has the aim to provide a brief overview of the history of our Universe, in the context of string theory and considering inflation as its possible application to cosmological problems. We then discuss type IIB string compactifications, introducing the study of the inflaton, a scalar field candidated to describe the inflation theory. The Large Volume Scenario (LVS) is studied in the second chapter paying particular attention to the stabilisation of the Kähler moduli which are four-dimensional gravitationally coupled scalar fields which parameterise the size of the extra dimensions. Moduli stabilisation is the process through which these particles acquire a mass and can become promising inflaton candidates. The third chapter is devoted to the study of Fibre Inflation which is an interesting inflationary model derived within the context of LVS compactifications. The fourth chapter tries to extend the zone of slow-roll of the scalar potential by taking larger values of the field φ. Everything is done with the purpose of studying in detail deviations of the cosmological observables, which can better reproduce current experimental data. Finally, we present a slight modification of Fibre Inflation based on a different compactification manifold. This new model produces larger tensor modes with a spectral index in good agreement with the date released in February 2015 by the Planck satellite.
Resumo:
This work is focused on axions and axion like particles (ALPs) and their possible relation with the 3.55 keV photon line detected, in recent years, from galaxy clusters and other astrophysical objects. We focus on axions that come from string compactification and we study the vacuum structure of the resulting low energy 4D N=1 supergravity effective field theory. We then provide a model which might explain the 3.55 keV line through the following processes. A 7.1 keV dark matter axion decays in two light axions, which, in turn, are transformed into photons thanks to the Primakoff effect and the existence of a kinetic mixing between two U(1)s gauge symmetries belonging respectively to the hidden and the visible sector. We present two models, the first one gives an outcome inconsistent with experimental data, while the second can yield the desired result.
Resumo:
Poset associahedra are a family of convex polytopes recently introduced by Pavel Galashin in 2021. The associahedron An is an (n-2)-dimensional convex polytope whose facial structure encodes the ways of parenthesizing an n-letter word (among several equivalent combinatorial objects). Associahedra are deeply studied polytopes that appear naturally in many areas of mathematics: algebra, combinatorics, geometry, topology... They have many presentations and generalizations. One of their incarnations is as a compactification of the configuration space of n points on a line. Similarly, the P-associahedron of a poset P is a compactification of the configuration space of order preserving maps from P to R. Galashin presents poset associahedra as combinatorial objects and shows that they can be realized as convex polytopes. However, his proof is not constructive, in the sense that no explicit coordinates are provided. The main goal of this thesis is to provide an explicit construction of poset associahedra as sections of graph associahedra, thus solving the open problem stated in Remark 1.5 of Galashin's paper.