8 resultados para 3D representation method

em AMS Tesi di Laurea - Alm@DL - Universit


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modern society is now facing significant difficulties in attempting to preserve its architectural heritage. Numerous challenges arise consequently when it comes to documentation, preservation and restoration. Fortunately, new perspectives on architectural heritage are emerging owing to the rapid development of digitalization. Therefore, this presents new challenges for architects, restorers and specialists. Additionally, this has changed the way they approach the study of existing heritage, changing from conventional 2D drawings in response to the increasing requirement for 3D representations. Recently, Building Information Modelling for historic buildings (HBIM) has escalated as an emerging trend to interconnect geometrical and informational data. Currently, the latest 3D geomatics techniques based on 3D laser scanners with enhanced photogrammetry along with the continuous improvement in the BIM industry allow for an enhanced 3D digital reconstruction of historical and existing buildings. This research study aimed to develop an integrated workflow for the 3D digital reconstruction of heritage buildings starting from a point cloud. The Pieve of San Michele in Acerboli’s Church in Santarcangelo Di Romagna (6th century) served as the test bed. The point cloud was utilized as an essential referential to model the BIM geometry using Autodesk Revit® 2022. To validate the accuracy of the model, Deviation Analysis Method was employed using CloudCompare software to determine the degree of deviation between the HBIM model and the point cloud. The acquired findings showed a very promising outcome in the average distance between the HBIM model and the point cloud. The conducted approach in this study demonstrated the viability of producing a precise BIM geometry from point clouds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, a new pushover procedure for 3D frame structures is proposed, based on the application of a set of horizontal force and torque distributions at each floor level; in order to predict the most severe configurations of an irregular structure subjected to an earthquake, more than one pushover analysis has to be performed. The proposed method is validated by a consistent comparison of results from static pushover and dynamic simulations in terms of different response parameters, such as displacements, rotations, floor shears and floor torques. Starting from the linear analysis, the procedure is subsequently extended to the nonlinear case. The results confirm the effectiveness of the proposed procedure to predict the structural behaviour in the most severe configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT (italiano) Con crescente attenzione riguardo al problema della sicurezza di ponti e viadotti esistenti nei Paesi Bassi, lo scopo della presente tesi è quello di studiare, mediante la modellazione con Elementi Finiti ed il continuo confronto con risultati sperimentali, la risposta in esercizio di elementi che compongono infrastrutture del genere, ovvero lastre in calcestruzzo armato sollecitate da carichi concentrati. Tali elementi sono caratterizzati da un comportamento ed una crisi per taglio, la cui modellazione è, da un punto di vista computazionale, una sfida piuttosto ardua, a causa del loro comportamento fragile combinato a vari effetti tridimensionali. La tesi è incentrata sull'utilizzo della Sequentially Linear Analysis (SLA), un metodo di soluzione agli Elementi Finiti alternativo rispetto ai classici approcci incrementali e iterativi. Il vantaggio della SLA è quello di evitare i ben noti problemi di convergenza tipici delle analisi non lineari, specificando direttamente l'incremento di danno sull'elemento finito, attraverso la riduzione di rigidezze e resistenze nel particolare elemento finito, invece dell'incremento di carico o di spostamento. Il confronto tra i risultati di due prove di laboratorio su lastre in calcestruzzo armato e quelli della SLA ha dimostrato in entrambi i casi la robustezza del metodo, in termini di accuratezza dei diagrammi carico-spostamento, di distribuzione di tensioni e deformazioni e di rappresentazione del quadro fessurativo e dei meccanismi di crisi per taglio. Diverse variazioni dei più importanti parametri del modello sono state eseguite, evidenziando la forte incidenza sulle soluzioni dell'energia di frattura e del modello scelto per la riduzione del modulo elastico trasversale. Infine è stato effettuato un paragone tra la SLA ed il metodo non lineare di Newton-Raphson, il quale mostra la maggiore affidabilità della SLA nella valutazione di carichi e spostamenti ultimi insieme ad una significativa riduzione dei tempi computazionali. ABSTRACT (english) With increasing attention to the assessment of safety in existing dutch bridges and viaducts, the aim of the present thesis is to study, through the Finite Element modeling method and the continuous comparison with experimental results, the real response of elements that compose these infrastructures, i.e. reinforced concrete slabs subjected to concentrated loads. These elements are characterized by shear behavior and crisis, whose modeling is, from a computational point of view, a hard challenge, due to their brittle behavior combined with various 3D effects. The thesis is focused on the use of Sequentially Linear Analysis (SLA), an alternative solution technique to classical non linear Finite Element analyses that are based on incremental and iterative approaches. The advantage of SLA is to avoid the well-known convergence problems of non linear analyses by directly specifying a damage increment, in terms of a reduction of stiffness and strength in the particular finite element, instead of a load or displacement increment. The comparison between the results of two laboratory tests on reinforced concrete slabs and those obtained by SLA has shown in both the cases the robustness of the method, in terms of accuracy of load-displacements diagrams, of the distribution of stress and strain and of the representation of the cracking pattern and of the shear failure mechanisms. Different variations of the most important parameters have been performed, pointing out the strong incidence on the solutions of the fracture energy and of the chosen shear retention model. At last a confrontation between SLA and the non linear Newton-Raphson method has been executed, showing the better reliability of the SLA in the evaluation of the ultimate loads and displacements, together with a significant reduction of computational times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present thesis we address the problem of detecting and localizing a small spherical target with characteristic electrical properties inside a volume of cylindrical shape, representing female breast, with MWI. One of the main works of this project is to properly extend the existing linear inversion algorithm from planar slice to volume reconstruction; results obtained, under the same conditions and experimental setup are reported for the two different approaches. Preliminar comparison and performance analysis of the reconstruction algorithms is performed via numerical simulations in a software-created environment: a single dipole antenna is used for illuminating the virtual breast phantom from different positions and, for each position, the corresponding scattered field value is registered. Collected data are then exploited in order to reconstruct the investigation domain, along with the scatterer position, in the form of image called pseudospectrum. During this process the tumor is modeled as a dielectric sphere of small radius and, for electromagnetic scattering purposes, it's treated as a point-like source. To improve the performance of reconstruction technique, we repeat the acquisition for a number of frequencies in a given range: the different pseudospectra, reconstructed from single frequency data, are incoherently combined with MUltiple SIgnal Classification (MUSIC) method which returns an overall enhanced image. We exploit multi-frequency approach to test the performance of 3D linear inversion reconstruction algorithm while varying the source position inside the phantom and the height of antenna plane. Analysis results and reconstructed images are then reported. Finally, we perform 3D reconstruction from experimental data gathered with the acquisition system in the microwave laboratory at DIFA, University of Bologna for a recently developed breast-phantom prototype; obtained pseudospectrum and performance analysis for the real model are reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis is to demonstrate that 3D-printing technologies can be considered significantly attractive in the production of microwave devices and in the antenna design, with the intention of making them lightweight, cheaper, and easily integrable for the production of wireless, battery-free, and wearable devices for vital signals monitoring. In this work, a new 3D-printable, low-cost resin material, the Flexible80A, is proposed as RF substrate in the implementation of a rectifying antenna (rectenna) operating at 2.45 GHz for wireless power transfer. A careful and accurate electromagnetic characterization of the abovementioned material, revealing it to be a very lossy substrate, has paved the way for the investigation of innovative transmission line and antenna layouts, as well as etching techniques, possible thanks to the design freedom enabled by 3D-printing technologies with the aim of improving the wave propagation performance within lossy materials. This analysis is crucial in the design process of a patch antenna, meant to be successively connected to the rectifier. In fact, many different patch antenna layouts are explored varying the antenna dimensions, the substrate etchings shape and position, the feeding line technology, and the operating frequency. Before dealing with the rectification stage of the rectenna design, the hot and long-discussed topic of the equivalent receiving antenna circuit representation is addressed, providing an overview of the interpretation of different authors about the issue, and the position that has been adopted in this thesis. Furthermore, two rectenna designs are proposed and simulated with the aim of minimizing the dielectric losses. Finally, a prototype of a rectenna with the antenna conjugate matched to the rectifier, operating at 2.45 GHz, has been fabricated with adhesive copper on a substrate sample of Flexible80A and measured, in order to validate the simulated results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electric cars are increasingly popular due to a transition of mobility towards more sustainable forms. From an increasingly green and pollution reduction perspective, there are more and more incentives that encourage customers to invest in electric cars. Using the Industrial Design and Structure (IDeS) research method, this project has the aim to design a new electric compact SUV suitable for all people who live in the city, and for people who move outside urban areas. In order to achieve the goal of developing a new car in the industrial automotive environment, the compact SUV segment was chosen because it is a vehicle very requested by the costumers and it is successful in the market due to its versatility. IDeS is a combination of innovative and advanced systematic approaches used to set up a new industrial project. The IDeS methodology is sequentially composed of Quality Function Deployment (QFD), Benchmarking (BM), Top-Flop analysis (TFA), Stylistic Design Engineering (SDE), Design for X, Prototyping, Testing, Budgeting, and Planning. The work is based on a series of steps and the sequence of these must be meticulously scheduled, imposing deadlines along the work. Starting from an analysis of the market and competitors, the study of the best and worst existing parameters in the competitor’s market is done, arriving at the idea of a better product in terms of numbers and innovation. After identifying the characteristics that the new car should have, the other step is the styling part, with the definition of the style and the design of the machine on a 3D CAD. Finally, it switches to the prototyping and testing phase to see if the product is able to work. Ultimately, intending to place the car on the market, it is essential to estimate the necessary budget for a possible investment in this project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neural scene representation and neural rendering are new computer vision techniques that enable the reconstruction and implicit representation of real 3D scenes from a set of 2D captured images, by fitting a deep neural network. The trained network can then be used to render novel views of the scene. A recent work in this field, Neural Radiance Fields (NeRF), presented a state-of-the-art approach, which uses a simple Multilayer Perceptron (MLP) to generate photo-realistic RGB images of a scene from arbitrary viewpoints. However, NeRF does not model any light interaction with the fitted scene; therefore, despite producing compelling results for the view synthesis task, it does not provide a solution for relighting. In this work, we propose a new architecture to enable relighting capabilities in NeRF-based representations and we introduce a new real-world dataset to train and evaluate such a model. Our method demonstrates the ability to perform realistic rendering of novel views under arbitrary lighting conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study, conducted in collaboration with Lawrence Technological University in Detroit, is to create, through the method of the Industrial Design Structure (IDeS), a new concept for a sport-coupe car, based on a restyling of a retro model (Ford Mustang 1967). To date, vintage models of cars always arouse great interest both for the history behind them and for the classic and elegant style. Designing a model of a vehicle that can combine the charm of retro style with the innovation and comfort of modern cars would allow to meet the needs and desires of a large segment of the market that today is forced to choose between past and future. Thanks to a well-conceived concept car an automaker company is able to express its future policy, to make a statement of intent as, such a prototype, ticks all the boxes, from glamour and visual wow-factor to technical intrigue and design fascination. IDeS is an approach that makes use of many engineering tools to realize a study developed on several steps that must be meticulously organized and timed. With a deep analysis of the trends dominating the automotive industry it is possible to identify a series of product requirements using quality function deployment (QFD). The considerations from this first evaluation led to the definition of the technical specifications via benchmarking (BM) and top-flop analysis (TFA). Then, the structured methodology of stylistic design engineering (SDE) is applied through six phases: (1) stylistic trends analysis; (2) sketches; (3) 2D CAD drawings; (4) 3D CAD models; (5) virtual prototyping; (6) solid stylistic model. Finally, Developing the IDeS method up to the final stages of Prototypes and Testing you get a product as close as possible to the ideal vehicle conceptualized in the initial analysis.