2 resultados para zinc ion
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
MnHCF was synthesized by simple co-precipitation method. In this work we investigate the electrochemical behavior of manganese hexacyanoferrate in zinc sulfate (ZnSO4), ZnSO4+MnSO4 and zinc triflate (Zn(OTF)2) aqueous electrolytes. Electrochemical tests were performed by both El-cell which is designed for reflection investigation and coin cell. In cyclic voltammetry curves, we observed redox peaks of both Fe3+/2+ and Mn3+/2+ pairs. The results based on current shows that the capacity of battery is controlled by diffusion process in aqueous electrolyte system. MnHCF undergoes severe dissolution and zinc displacement during cycling. Compared to ZnSO4, anions of Zn (OTF)2 electrolyte are strongly adsorbed on the electrolyte surface, in turn hindering the water oxidation reaction and reducing the decomposition of MnHCF. The MnHCF/Zn battery using 3M Zn (OTF)2 delivers a specific capacity of 41 mAhg-1 at 50 mAg-1 while by using 3M ZnSO4+1M MnSO4 the specific capacity reaches to 400 mAhg-1 for the pure sample and around 250 mAhg-1 for the MnHCF+A. Our results suggest that the anions in the aqueous electrolyte are of great importance to optimize the electrochemical performance of metal hexacyanoferrates. The pre-addition of MnSO4 into ZnSO4 solution is capable of easing the Mn2+ dissolution from the cathode.
Resumo:
Due to the limited resources of lithium, new chemistries based on the abundant and cheap sodium and even zinc have been proposed for the battery market. Prussian Blue Analogues (PBAs) are a class of compounds which have been explored for many different applications because of their intriguing electrochemical and magnetic properties. Manganese and titanium hexacyanoferrate (MnHCF and TiHCF) belong to the class of PBAs. In this work, MnHCF and TiHCF electrodes were synthetized, cycled with cyclic voltammetry (CV) in different setups and subsequently, the surfaces were characterized with X-ray Photoelectron Spectroscopy (XPS). The setups chosen for CVs were coin cell with zinc aqueous solution for the MnHCF series, three-electrode cell and symmetric coin cell with sodium aqueous solution for the TiHCF series. The electrodes were treated with different number of cycles to evaluate the chemical changes and alterations in oxidation states during cycling.