2 resultados para well production
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.
Resumo:
The aim of this work was to optimize a methodology to extract cellulose and to produce NC, from different lignocellulosic biomasses (sorghum, Sorghum bicolor (L.) Moench and sunn hemp, Crotalaria juncea L.). In addition, the NC produced was tested as a reinforcing agent in chitosan (Ch) films, to understand its effects on the properties of this biopolymer. The nanoparticles obtained from sorghum and sunn hemp were incorporated in Ch films at a rate of 2.5% w/w of chitosan, and the resultant bionanocomposites (Sorghum NC films and sunn hemp NC films) were fully characterized in terms of their morphology, mechanical and optical properties, permeability (water vapor), water wettability, and FT-IR spectra analysis. Chitosan films reinforced with commercial nanocellulose at the same rate were tested for comparison, as well as pristine chitosan (control). Bionanocomposites made from sorghum and sunn hemp NC were slightly more saturated and opaque than the pristine chitosan films, in particular outer sorghum NC films. Sunn hemp NC films also showed a slightly higher thickness than sorghum NC films and pristine chitosan films. Further, the results confirmed that sorghum NC improved the strength and stiffness of the chitosan biopolymer and that sunn hemp NC improved the plasticity of the chitosan polymer. Hence, results indicate that those lignocellulosic crops may afford a source of NC for the production of bionanocomposites. Considering the application of those bionanocomposites by the food packaging industry, sorghum NC - chitosan films showed more promising results than sunn hemp NC-chitosan films.