4 resultados para water soluble cellulose hydrolysis product ethylmethylimidazolium sulfate

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water is the driving force in nature. We use water for washing cars, doing laundry, cooking, taking a shower, but also to generate energy and electricity. Therefore water is a necessary product in our daily lives (USGS. Howard Perlman, 2013). The model that we created is based on the urban water demand computer model from the Pacific Institute (California). With this model we will forecast the future urban water use of Emilia Romagna up to the year of 2030. We will analyze the urban water demand in Emilia Romagna that includes the 9 provinces: Bologna, Ferrara, Forli-Cesena, Modena, Parma, Piacenza, Ravenna, Reggio Emilia and Rimini. The term urban water refers to the water used in cities and suburbs and in homes in the rural areas. This will include the residential, commercial, institutional and the industrial use. In this research, we will cover the water saving technologies that can help to save water for daily use. We will project what influence these technologies have to the urban water demand, and what it can mean for future urban water demands. The ongoing climate change can reduce the snowpack, and extreme floods or droughts in Italy. The changing climate and development patterns are expected to have a significant impact on water demand in the future. We will do this by conducting different scenario analyses, by combining different population projections, climate influence and water saving technologies. In addition, we will also conduct a sensitivity analyses. The several analyses will show us how future urban water demand is likely respond to changes in water conservation technologies, population, climate, water price and consumption. I hope the research can contribute to the insight of the reader’s thoughts and opinion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present thesis, carried out at the Analytical Group of the Faculty of Industrial Chemistry in Bologna, is to develop a new electrochemical method for the determination of the Antioxidant Capacity (AOC). The approach is based on the deposition of a non-conducting polymeric film on the working electrode surface and the following exposition to the radicals OH· produced by H2O2 photolysis. The strongly oxidant action of hydroxyl radicals degrades, causing an increase of the Faradic current, relevant to the redox couple [Ru(NH3)6]2+/3+ monitored by cyclic voltammetry(CV); the presence of an antioxidant compound in solution slows down the radical action, thus protecting the polymeric film and blocking the charge transfer. The parameter adopted for the quantification of the AOC, was the induction time, called also lag phase, which is the time when the degradation of the film starts. Five pure compounds, among most commonly antioxidant, were investigated : Trolox®(an analogue water-soluble of vitamin E), (L)-ascorbic acid, gallic acid, pyrogallol and (-)- epicatechin. The AOC of each antioxidant was expressed by TEAC index (Trolox® Equivalent Antioxidant Capacity), calculated from the ratio between the slope of the calibration curve of the target compound and the slope of the calibration curve of Trolox®. The results from the electrochemical method, have been compared with those obtained from some other standardized methods, widely employed. The assays used for the comparison, have been: ORAC, a spectrofluorimetric method based on the decrease of fluorescein emission after the attack of alkylperoxide radicals, ABTS and DPPH that exploit the decoloration of stable nitrogen radicals when they are reduced in presence of an antioxidant compound and, finally, a potentiometric method based on the response of the redox couple [Fe(CN)6]3-/ [Fe(CN)6]4-. From the results obtained from pure compounds, it has been found that ORAC is the methodology showing the best correlation with the developed electrochemical method, maybe since similar radical species are involved. The comparison between the considered assays, was also extended to the analysis of a real sample of fruit juice. In such a case the TEAC value resulting from the electrochemical method is higher than those from standardized assays.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cor-Ten is a particular kind of steel, belonging to low-alloyed steel; thanks to his aesthetic features and resistance to atmospheric corrosion, this material is largely used in architectural, artistic and infrastructural applications. After environmental exposure, Cor-Ten steel exhibits the characteristic ability to self-protect from corrosion, by the development of a stable and adherent protective layer. However, some environmental factors can influence the formation and stability of the patina. In particular, exposure of Cor-Ten to polluted atmosphere (NOx, SOx, O3) or coastal areas (marine spray) may cause problems to the protective layer and, as a consequence, a release of alloying metals, which can accumulate near the structures. Some of these metals, such as Cr and Ni, could be very dangerous for soils and water because of their large toxicity. The aim of this work was to study the corrosion behavior of Cor-Ten exposed to an urban-coastal site (Rimini, Italy). Three different kinds of commercial surface finish (bare and pre-patinated, with or without a beeswax covering) were examined, both in sheltered and unsheltered exposure conditions. Wet deposition brushing the specimens surface (leaching solutions) are monthly collected and analyzed to evaluate the extent of metal release and the form in which they leave the surface, for example, as water-soluble compounds or non-adherent corrosion products. Five alloying metals (Fe, Cu, Cr, Mn and Ni) and nine ions (Cl-, NO3-, NO2-, SO42-, Na+, Ca2+, K+, Mg2+, NH4+) are determined through Atomic Absorption Spectroscopy and Ion Chromatography, respectively. Furthermore, the evolution and the behaviour of the patina are periodically followed by surface investigations (SEM-EDS and Raman Spectroscopy). After two years of exposure, the results show that Bare Cor-Ten, cheaper than the other analyzed specimens, even though undergoes the greater mass variation, his metal release is comparable to the release of the pre-patinated samples. The behavior of pre-patinated steel, with or without beeswax covering, do not show particular difference. This exposure environment doesn’t allow a completely stabilization of the patina; nevertheless an estimate of metal release after 10 years of exposure points out that the environmental impact of Cor-Ten is very low: for example, the release of chromium in the soluble fraction is less than 10 mg if we consider an exposed wall of 10 m2.