2 resultados para virtual work

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this thesis is to present the concept of simulation for automatic machines and how it might be used to test and debug software implemented for an automatic machine. The simulation is used to detect errors and allow corrections of the code before the machine has been built. Simulation permits testing different solutions and improving the software to get an optimized one. Additionally, simulation can be used to keep track of a machine after the installation in order to improve the production process during the machine’s life cycle. The central argument of this project is discussing the advantage of using virtual commissioning to test the implemented software in a virtual environment. Such an environment is getting benefit in avoiding potential damages as well as reduction of time to have the machine ready to work. Also, the use of virtual commissioning allows testing different solutions without high losses of time and money. Subsequently, an optimized solution could be found after testing different proposed solutions. The software implemented is based on the Object-Oriented Programming paradigm which implies different features such as encapsulation, modularity, and reusability of the code. Therefore, this way of programming helps to get simplified code that is easier to be understood and debugged as well as its high efficiency. Finally, different communication protocols are implemented in order to allow communication between the real plant and the simulation model. By the outcome that this communication provides, we might be able to gather all the necessary data for the simulation and the analysis, in real-time, of the production process in a way to improve it during the machine life cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A global italian pharmaceutical company has to provide two work environments that favor different needs. The environments will allow to develop solutions in a controlled, secure and at the same time in an independent manner on a state-of-the-art enterprise cloud platform. The need of developing two different environments is dictated by the needs of the working units. Indeed, the first environment is designed to facilitate the creation of application related to genomics, therefore, designed more for data-scientists. This environment is capable of consuming, producing, retrieving and incorporating data, furthermore, will support the most used programming languages for genomic applications (e.g., Python, R). The proposal was to obtain a pool of ready-togo Virtual Machines with different architectures to provide best performance based on the job that needs to be carried out. The second environment has more of a traditional trait, to obtain, via ETL (Extract-Transform-Load) process, a global datamodel, resembling a classical relational structure. It will provide major BI operations (e.g., analytics, performance measure, reports, etc.) that can be leveraged both for application analysis or for internal usage. Since, both architectures will maintain large amounts of data regarding not only pharmaceutical informations but also internal company informations, it would be possible to digest the data by reporting/ analytics tools and also apply data-mining, machine learning technologies to exploit intrinsic informations. The thesis work will introduce, proposals, implementations, descriptions of used technologies/platforms and future works of the above discussed environments.