1 resultado para variance analysis
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ANIMAL PRODUCTION JOURNAL (3)
- Aquatic Commons (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (33)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (29)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (8)
- CentAUR: Central Archive University of Reading - UK (23)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (8)
- Cochin University of Science & Technology (CUSAT), India (5)
- Coffee Science - Universidade Federal de Lavras (1)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (3)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (5)
- DigitalCommons@The Texas Medical Center (18)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (13)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (8)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (18)
- Queensland University of Technology - ePrints Archive (208)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (2)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (311)
- Repositorio Institucional Universidad de Medellín (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (10)
- Universidade Complutense de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (12)
- Universidade Metodista de São Paulo (10)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (4)
- University of Connecticut - USA (1)
- University of Michigan (6)
- University of Queensland eSpace - Australia (19)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
One of the biggest challenges that contaminant hydrogeology is facing, is how to adequately address the uncertainty associated with model predictions. Uncertainty arise from multiple sources, such as: interpretative error, calibration accuracy, parameter sensitivity and variability. This critical issue needs to be properly addressed in order to support environmental decision-making processes. In this study, we perform Global Sensitivity Analysis (GSA) on a contaminant transport model for the assessment of hydrocarbon concentration in groundwater. We provide a quantification of the environmental impact and, given the incomplete knowledge of hydrogeological parameters, we evaluate which are the most influential, requiring greater accuracy in the calibration process. Parameters are treated as random variables and a variance-based GSA is performed in a optimized numerical Monte Carlo framework. The Sobol indices are adopted as sensitivity measures and they are computed by employing meta-models to characterize the migration process, while reducing the computational cost of the analysis. The proposed methodology allows us to: extend the number of Monte Carlo iterations, identify the influence of uncertain parameters and lead to considerable saving computational time obtaining an acceptable accuracy.