3 resultados para validation of pharmaceutical methods
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The representation of the thermal behaviour of the building is achieved through a relatively simple dynamic model that takes into account the effects due to the thermal mass of the building components. The model of a intra-floor apartment has been built in the Matlab-Simulink environment and considers the heat transmission through the external envelope, wall and windows, the internal thermal masses, (i.e. furniture, internal wall and floor slabs) and the sun gain due to opaque and see-through surfaces of the external envelope. The simulations results for the entire year have been compared and the model validated, with the one obtained with the dynamic building simulation software Energyplus.
Resumo:
[ITA]La demenza consiste nel deterioramento, spesso progressivo, dello stato cognitivo di un individuo. Chi è affetto da demenza, presenta alterazioni a livello cognitivo, comportamentale e motorio, ad esempio compiendo gesti ossessivi, ripetitivi, senza uno scopo preciso. La condizione dei pazienti affetti da demenza è valutata clinicamente tramite apposite scale e le informazioni relative al comportamento vengono raccolte intervistando chi se ne occupa, come familiari, il personale infermieristico o il medico curante. Spesso queste valutazioni si rivelano inaccurate, possono essere fortemente influenzate da considerazioni soggettive, e sono dispendiose in termini di tempo. Si ha quindi l'esigenza di disporre di metodiche oggettive per valutare il comportamento motorio dei pazienti e le sue alterazioni patologiche; i sensori inerziali indossabili potrebbero costituire una valida soluzione, per questo scopo. L'obiettivo principale della presente attività di tesi è stato definire e implementare un software per una valutazione oggettiva, basata su sensori, del pattern motorio circadiano, in pazienti affetti da demenza ricoverati in un'unità di terapia a lungo termine, che potrebbe evidenziare differenze nei sintomi della malattia che interessano il comportamento motorio, come descritto in ambito clinico. Lo scopo secondario è stato quello di verificare i cambiamenti motori pre- e post-intervento in un sottogruppo di pazienti, a seguito della somministrazione di un programma sperimentale di intervento basato su esercizi fisici. --------------- [ENG]Dementia involves deterioration, often progressive, of a person's cognitive status. Those who suffer from dementia, present alterations in cognitive and motor behavior, for example performing obsessive and repetitive gestures, without a purpose. The condition of patients suffering from dementia is clinically assessed by means of specific scales and information relating to the behavior are collected by interviewing caregivers, such as the family, nurses, or the doctor. Often it turns out that these are inaccurate assessments that may be heavily influenced by subjective evaluations and are costly in terms of time. Therefore, there is the need for objective methods to assess the patients' motor behavior and the pathological changes; wearable inertial sensors may represent a viable option, so this aim. The main objective of this thesis project was to define and implement a software for a sensor-based assessment of the circadian motor pattern in patients suffering from dementia, hospitalized in a long-term care unit, which could highlight differences in the disease symptoms affecting the motor behavior, as described in the clinical setting. The secondary objective was to verify pre- and post-intervention changes in the motor patterns of a subgroup of patients, following the administration of an experimental program of intervention based on physical exercises.
Resumo:
The work described in this Master’s Degree thesis was born after the collaboration with the company Maserati S.p.a, an Italian luxury car maker with its headquarters located in Modena, in the heart of the Italian Motor Valley, where I worked as a stagiaire in the Virtual Engineering team between September 2021 and February 2022. This work proposes the validation using real-world ECUs of a Driver Drowsiness Detection (DDD) system prototype based on different detection methods with the goal to overcome input signal losses and system failures. Detection methods of different categories have been chosen from literature and merged with the goal of utilizing the benefits of each of them, overcoming their limitations and limiting as much as possible their degree of intrusiveness to prevent any kind of driving distraction: an image processing-based technique for human physical signals detection as well as methods based on driver-vehicle interaction are used. A Driver-In-the-Loop simulator is used to gather real data on which a Machine Learning-based algorithm will be trained and validated. These data come from the tests that the company conducts in its daily activities so confidential information about the simulator and the drivers will be omitted. Although the impact of the proposed system is not remarkable and there is still work to do in all its elements, the results indicate the main advantages of the system in terms of robustness against subsystem failures and signal losses.