2 resultados para urban-rural income disparity
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Water is the driving force in nature. We use water for washing cars, doing laundry, cooking, taking a shower, but also to generate energy and electricity. Therefore water is a necessary product in our daily lives (USGS. Howard Perlman, 2013). The model that we created is based on the urban water demand computer model from the Pacific Institute (California). With this model we will forecast the future urban water use of Emilia Romagna up to the year of 2030. We will analyze the urban water demand in Emilia Romagna that includes the 9 provinces: Bologna, Ferrara, Forli-Cesena, Modena, Parma, Piacenza, Ravenna, Reggio Emilia and Rimini. The term urban water refers to the water used in cities and suburbs and in homes in the rural areas. This will include the residential, commercial, institutional and the industrial use. In this research, we will cover the water saving technologies that can help to save water for daily use. We will project what influence these technologies have to the urban water demand, and what it can mean for future urban water demands. The ongoing climate change can reduce the snowpack, and extreme floods or droughts in Italy. The changing climate and development patterns are expected to have a significant impact on water demand in the future. We will do this by conducting different scenario analyses, by combining different population projections, climate influence and water saving technologies. In addition, we will also conduct a sensitivity analyses. The several analyses will show us how future urban water demand is likely respond to changes in water conservation technologies, population, climate, water price and consumption. I hope the research can contribute to the insight of the reader’s thoughts and opinion.
Resumo:
Nowadays the environmental issues and the climatic change play fundamental roles in the design of urban spaces. Our cities are growing in size, many times only following immediate needs without a long-term vision. Consequently, the sustainable development has become not only an ethical but also a strategic need: we can no longer afford an uncontrolled urban expansion. One serious effect of the territory industrialisation process is the increase of urban air and surfaces temperatures compared to the outlying rural surroundings. This difference in temperature is what constitutes an urban heat island (UHI). The purpose of this study is to provide a clarification on the role of urban surfacing materials in the thermal dynamics of an urban space, resulting in useful indications and advices in mitigating UHI. With this aim, 4 coloured concrete bricks were tested, measuring their emissivity and building up their heat release curves using infrared thermography. Two emissivity evaluation procedures were carried out and subsequently put in comparison. Samples performances were assessed, and the influence of the colour on the thermal behaviour was investigated. In addition, some external pavements were analysed. Albedo and emissivity parameters were evaluated in order to understand their thermal behaviour in different conditions. Surfaces temperatures were recorded in a one-day measurements campaign. ENVI-met software was used to simulate how the tested materials would behave in two typical urban scenarios: a urban canyon and a urban heat basin. Improvements they can carry to the urban microclimate were investigated. Emissivities obtained for the bricks ranged between 0.92 and 0.97, suggesting a limited influence of the colour on this parameter. Nonetheless, white concrete brick showed the best thermal performance, whilst the black one the worst; red and yellow ones performed pretty identical intermediate trends. De facto, colours affected the overall thermal behaviour. Emissivity parameter was measured in the outdoor work, getting (as expected) high values for the asphalts. Albedo measurements, conducted with a sunshine pyranometer, proved the improving effect given by the yellow paint in terms of solar reflection, and the bad influence of haze on the measurement accuracy. ENVI-met simulations gave a demonstration on the effectiveness in thermal improving of some tested materials. In particular, results showed good performances for white bricks and granite in the heat basin scenario, and painted concrete and macadam in the urban canyon scenario. These materials can be considered valuable solutions in UHI mitigation.