2 resultados para upper level (UL) coupling field
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Climate change is affecting pelagic ecosystems with repercussions on fish production. In particular, global change is increasing oceanic temperature and stratification with decrease in nutrient input in euphotic layer leading to a decline in primary production. The mesocosm-based project Ocean Art-Up, conducted in Gran Canaria, is aimed to increase fish production and to enhance carbon sequestration through an artificial upwelling system. Diatoms dominate the phytoplankton community in upwelling systems and they need to take up silicates to grow. The abundance and nutritional value of diatoms determine the fate of phytoplankton biomass with transport to the upper level of the pelagic food web or to the deeper layer of the ocean with potential carbon sequestration. Here, data about experiments performed in 2018 and 2019 are reported. The first mesocosm experiment investigated the differences between pulsed and continuous upwelling mode, while the second experiment was conducted with a gradient in Si:N ratio along the mesocosms. The phytoplankton community takes up and incorporate silica about at the same rate in continuous mode, while in pulsed mode its peak occurred only after the deep-water addition. The diatom silica content is not affected by mode and amount of water added but by the Si:N ratio. Diatoms grown in an environment with high Si:N ratio values show higher abundance, biogenic silica production, silica uptake and silica content than the ones that experienced low Si:N values. In addition from literature, euphotic zone rich in silicate may produce high silica containing-diatoms who will produce repercussions on copepods community regarding feeding, hatching and growth, thus continuous upwelling with high Si:N ratio favours diatoms who will tend to sink and to be converted by copepods into fecal pellet rich in silica with increasing in potential carbon sequestration. Fish production may increase with continuous artificial upwelling showing low Si:N values.
Resumo:
The 1-D 1/2-spin XXZ model with staggered external magnetic field, when restricting to low field, can be mapped into the quantum sine-Gordon model through bosonization: this assures the presence of soliton, antisoliton and breather excitations in it. In particular, the action of the staggered field opens a gap so that these physical objects are stable against energetic fluctuations. In the present work, this model is studied both analytically and numerically. On the one hand, analytical calculations are made to solve exactly the model through Bethe ansatz: the solution for the XX + h staggered model is found first by means of Jordan-Wigner transformation and then through Bethe ansatz; after this stage, efforts are made to extend the latter approach to the XXZ + h staggered model (without finding its exact solution). On the other hand, the energies of the elementary soliton excitations are pinpointed through static DMRG (Density Matrix Renormalization Group) for different values of the parameters in the hamiltonian. Breathers are found to be in the antiferromagnetic region only, while solitons and antisolitons are present both in the ferromagnetic and antiferromagnetic region. Their single-site z-magnetization expectation values are also computed to see how they appear in real space, and time-dependent DMRG is employed to realize quenches on the hamiltonian parameters to monitor their time-evolution. The results obtained reveal the quantum nature of these objects and provide some information about their features. Further studies and a better understanding of their properties could bring to the realization of a two-level state through a soliton-antisoliton pair, in order to implement a qubit.