3 resultados para unified addition

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to investigate two candidate waveforms for next generation wireless systems, filtered Orthogonal Frequency Division Multiplexing (f-OFDM) and Unified Filtered Multi-Carrier (UFMC). The evaluation is done based on the power spectral density analysis of the signal and performance measurements in synchronous and asynchronous transmission. In f-OFDM we implement a soft truncated filter with length 1/3 of OFDM symbol. In UFMC we use the Dolph-Chebyshev filter, limited to the length of zero padding (ZP). The simulation results demonstrates that both waveforms have a better spectral behaviour compared with conventional OFDM. However, the induced inter-symbol interference (ISI) caused by the filter in f-OFDM, and the inter-carrier interference (ICI) induced in UFMC due to cyclic prefix (CP) reduction , should be kept under control. In addition, in a synchronous transmission case with ideal parameters, f-OFDM and UFMC appear to have similar performance with OFDM. When carrier frequency offset (CFO) is imposed in the transmission, UFMC outperforms OFDM and f-OFDM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymmetric organocatalysed reactions are one of the most fascinating synthetic strategies which one can adopt in order to induct a desired chirality into a reaction product. From all the possible practical applications of small organic molecules in catalytic reaction, amine–based catalysis has attracted a lot of attention during the past two decades. The high interest in asymmetric aminocatalytic pathways is to account to the huge variety of carbonyl compounds that can be functionalized by many different reactions of their corresponding chiral–enamine or –iminium ion as activated nucleophile and electrophile, respectively. Starting from the employment of L–Proline, many useful substrates have been proposed in order to further enhance the catalytic performances of these reaction in terms of enantiomeric excess values, yield, conversion of the substrate and turnover number. In particular, in the last decade the use of chiral and quasi–enantiomeric primary amine species has got a lot of attention in the field. Contemporaneously, many studies have been carried out in order to highlight the mechanism through which these kinds of substrates induct chirality into the desired products. In this scenario, computational chemistry has played a crucial role due to the possibility of simulating and studying any kind of reaction and the transition state structures involved. In the present work the transition state geometries of primary amine–catalysed Michael addition reaction of cyclohexanone to trans–β–nitrostyrene with different organic acid cocatalysts has been studied through different computational techniques such as density functional theory based quantum mechanics calculation and force–field directed molecular simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decade it emerged the interest in new types of acoustic insulating materials, called acoustic metamaterials. These materials are composed by a host and inclusions and are arranged periodically or non-periodically in sub-wavelength elements called meta-atoms. Their inclusions and internal geometries can be manipulated to tailor the acoustic properties, reducing weight, and increasing at the same time their efficiency. Thanks to the high absorbing characteristics that they can achieve, their usage is of particularly interest as material of the core in sandwich panels of aerospace structures to reduce vibrations and noise inside passengers aircraft’s cabin. In addition, since the low frequency signals are difficult to be damped with conventional materials, their usage can guarantee a high transmission loss at low frequencies, obtaining a positive benefit on passengers’ comfort. The performances and efficiency of these materials are enhanced thanks to the new additive manufacturing techniques opposed to the conventional ones uncapable to pro- duce such complex internal geometries. The aim of this work is to study, produce and redesign micro-perforated sandwich panels of a literature case study to achieve high performances in the low frequency range, e.g., below 2000 Hz. Some geometrical parameters, such as perforation ratio and diameter of holes, were considered to realize different models and see the differences in the sound transmission loss. The models were produced by means of Fused Deposition Modelling using an Acrylonitrile Butadiene Styrene (ABS Plus p430) material on a commercial additive manufacturing system. Finally, the frequency response analysis was carried out with Mul2 software, based on the Carrera’s Unified Formulation (CUF) to understand the acoustic and structural properties of the material employed, analyzing the plates’ displacements and the TL results.