17 resultados para twitter

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il problema relativo alla predizione, la ricerca di pattern predittivi all‘interno dei dati, è stato studiato ampiamente. Molte metodologie robuste ed efficienti sono state sviluppate, procedimenti che si basano sull‘analisi di informazioni numeriche strutturate. Quella testuale, d‘altro canto, è una tipologia di informazione fortemente destrutturata. Quindi, una immediata conclusione, porterebbe a pensare che per l‘analisi predittiva su dati testuali sia necessario sviluppare metodi completamente diversi da quelli ben noti dalle tecniche di data mining. Un problema di predizione può essere risolto utilizzando invece gli stessi metodi : dati testuali e documenti possono essere trasformati in valori numerici, considerando per esempio l‘assenza o la presenza di termini, rendendo di fatto possibile una utilizzazione efficiente delle tecniche già sviluppate. Il text mining abilita la congiunzione di concetti da campi di applicazione estremamente eterogenei. Con l‘immensa quantità di dati testuali presenti, basti pensare, sul World Wide Web, ed in continua crescita a causa dell‘utilizzo pervasivo di smartphones e computers, i campi di applicazione delle analisi di tipo testuale divengono innumerevoli. L‘avvento e la diffusione dei social networks e della pratica di micro blogging abilita le persone alla condivisione di opinioni e stati d‘animo, creando un corpus testuale di dimensioni incalcolabili aggiornato giornalmente. Le nuove tecniche di Sentiment Analysis, o Opinion Mining, si occupano di analizzare lo stato emotivo o la tipologia di opinione espressa all‘interno di un documento testuale. Esse sono discipline attraverso le quali, per esempio, estrarre indicatori dello stato d‘animo di un individuo, oppure di un insieme di individui, creando una rappresentazione dello stato emotivo sociale. L‘andamento dello stato emotivo sociale può condizionare macroscopicamente l‘evolvere di eventi globali? Studi in campo di Economia e Finanza Comportamentale assicurano un legame fra stato emotivo, capacità nel prendere decisioni ed indicatori economici. Grazie alle tecniche disponibili ed alla mole di dati testuali continuamente aggiornati riguardanti lo stato d‘animo di milioni di individui diviene possibile analizzare tali correlazioni. In questo studio viene costruito un sistema per la previsione delle variazioni di indici di borsa, basandosi su dati testuali estratti dalla piattaforma di microblogging Twitter, sotto forma di tweets pubblici; tale sistema include tecniche di miglioramento della previsione basate sullo studio di similarità dei testi, categorizzandone il contributo effettivo alla previsione.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gli ultimi anni hanno visto una crescita esponenziale nell’uso dei social media (recensioni, forum, discussioni, blog e social network); le persone e le aziende utilizzano sempre più le informazioni (opinioni e preferenze) pubblicate in questi mezzi per il loro processo decisionale. Tuttavia, il monitoraggio e la ricerca di opinioni sul Web da parte di un utente o azienda risulta essere un problema molto arduo a causa della proliferazione di migliaia di siti; in più ogni sito contiene un enorme volume di testo non sempre decifrabile in maniera ottimale (pensiamo ai lunghi messaggi di forum e blog). Inoltre, è anche noto che l’analisi soggettiva delle informazioni testuali è passibile di notevoli distorsioni, ad esempio, le persone tendono a prestare maggiore attenzione e interesse alle opinioni che risultano coerenti alle proprie attitudini e preferenze. Risulta quindi necessario l’utilizzo di sistemi automatizzati di Opinion Mining, per superare pregiudizi soggettivi e limitazioni mentali, al fine di giungere ad una metodologia di Sentiment Analysis il più possibile oggettiva.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the time, Twitter has become a fundamental source of information for news. As a one step forward, researchers have tried to analyse if the tweets contain predictive power. In the past, in financial field, a lot of research has been done to propose a function which takes as input all the tweets for a particular stock or index s, analyse them and predict the stock or index price of s. In this work, we take an alternative approach: using the stock price and tweet information, we investigate following questions. 1. Is there any relation between the amount of tweets being generated and the stocks being exchanged? 2. Is there any relation between the sentiment of the tweets and stock prices? 3. What is the structure of the graph that describes the relationships between users?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Negli anni la funzione dei social network è cambiata molte volte. Alle origini i social network erano uno strumento di connessione tra amici, ora sono siti internet in cui le persone mettono informazioni e quando un social network ha milioni di utenti, diventa un’incredibile sorgente di dati. Twitter è uno dei siti internet più visitati, e viene descritto come “the SMS of internet”, perchè è un social network che permette ai suoi utenti di inviare e leggere messaggi corti, di 140 caratteri, chiamati “tweets”. Con il passare del tempo Twitter `e diventato una fonte fondamentale di notizie. Il suo grande numero di utenti permette alle notizie di espandersi nella rete in modo virale. Molte persone hanno cercato di analizzare il potere dei tweet, come il contenuto positivo o negativo, mentre altri hanno cercato di capire se avessero un potere predittivo. In particolare nel mondo finanziario, sono state avviate molte ricerche per verificare l’esistenza di una effettiva correlazione tra i tweets e la fluttuazione del mercato azionario. L’effettiva presenza di tale relazione unita a un modello predittivo, potrebbe portare allo sviluppo di un modello che analizzando i tweets presenti nella rete, relativi a un titolo azionario, dia informazioni sulle future variazioni del titolo stesso. La nostra attenzione si è rivolata alla ricerca e validazione statistica di tale correlazione. Sono stati effettuati test su singole azioni, sulla base dei dati disponibili, poi estesi a tutto il dataset per vedere la tendenza generale e attribuire maggior valore al risultato. Questa ricerca è caratterizzata dal suo dataset di tweet che analizza un periodo di oltre 2 anni, uno dei periodi più lunghi mai analizzati. Si è cercato di fornire maggior valore ai risultati trovati tramite l’utilizzo di validazioni statistiche, come il “permutation test”, per validare la relazione tra tweets di un titolo con i relativi valori azionari, la rimozione di una percentuale di eventi importanti, per mostrare la dipendenza o indipendenza dei dati dagli eventi più evidenti dell’anno e il “granger causality test”, per capire la direzione di una previsione tra serie. Sono stati effettuati anche test con risultati fallimentari, dai quali si sono ricavate le direzioni per i futuri sviluppi di questa ricerca.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I Social Network sono una fonte di informazioni di natura spontanea, non guidata, provviste di posizione spaziale e prodotte in tempo reale. Il Social Sensing si basa sull'idea che gruppi di persone possano fornire informazioni, su eventi che accadono nelle loro vicinanze, simili a quelle ottenibili da sensori. La letteratura in merito all’utilizzo dei Social Media per il rilevamento di eventi catastrofici mostra una struttura comune: acquisizione, filtraggio e classificazione dei dati. La piattaforma usata, nella maggior parte dei lavori e da noi, è Twitter. Proponiamo un sistema di rilevamento di eventi per l’Emilia Romagna, tramite l’analisi di tweet geolocalizzati. Per l’acquisizione dei dati abbiamo utilizzato le Twitter API. Abbiamo effettuato due passaggi per il filtraggio dei tweet. Primo, selezione degli account di provenienza dei tweet, se non sono personali è improbabile che siano usati per dare informazioni e non vanno tenuti in considerazione. Secondo, il contenuto dei tweet, vengono scartati se presentano termini scurrili, parole come “buon giorno” e un numero di tag, riferiti ad altri utenti, superiore a quattro. La rilevazione di un valore anomalo rispetto all'insieme delle osservazioni che stiamo considerando (outlier), è il primo indice di un evento eccezionale. Per l’analisi siamo ricorsi all’outlier detection come indice di rilevamento di un evento. Fatta questa prima analisi si controlla che ci sia un effettivo picco di tweet in una zona della regione. Durante il periodo di attività non sono accaduti eventi straordinari, abbiamo quindi simulato un avvenimento per testare l'efficacia del nostro sistema. La maggior difficoltà è che i dati geolocalizzati sono in numero molto esiguo, è quindi difficile l'identificazione dei picchi. Per migliorare il sistema si propone: il passaggio a streaming dei tweet e un aumento della velocità di filtraggio; la automatizzazione dei filtri; l'implementazione di un modulo finale che operi a livello del testo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il presente elaborato, "Joomla! e Microweb: soluzioni low cost per la piccola impresa", si pone l'obiettivo di unire un insieme di realtà differenti tra loro: esigenze economiche, piattaforme tecniche e rete sociale possono integrarsi in un circuito virtuoso. Attraverso l'analisi della piattaforma CMS Joomla!, e la sua integrazione con utilities di terze parti, è possibile velocizzare senza perdere qualità, abbattendo i costi, il processo di pubblicazione e mantenimento di un sito web. Attraverso, poi, un'efficace integrazione di Joomla! con servizi social integrati nella piattaforma stessa, è possibile venire in contatto con quelli che vengono definiti gli hub concettuali della rete, come Facebook e YouTube. Mirate politiche di marketing, soprattutto per i prodotti di nicchia, possono essere quindi portate a termine con soddisfazione senza cadere in costi eccessivamente elevati. Infine, è stato coniato il concetto di "Microweb" che sintetizza nel suo significato il processo di integrazione di servizi social e di utilities in un'unica piattaforma madre, nel caso specifico Joomla!.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'informazione è alla base della conoscenza umana. Senza, non si potrebbe sapere nulla di ciò che esiste, di ciò che è stato o di quello che potrebbe accadere. Ogni giorno si assimilano moltissime informazioni, che vengono registrate nella propria memoria per essere riutilizzate all'occorrenza. Ne esistono di vari generi, ma il loro insieme va a formare quella che è la cultura, educazione, tradizione e storia dell'individuo. Per questo motivo è importante la loro diffusione e salvaguardia, impedendone la perdita che costerebbe la dipartita di una parte di sé, del proprio passato o del proprio futuro. Al giorno d'oggi le informazioni possono essere acquisite tramite persone, libri, riviste, giornali, la televisione, il Web. I canali di trasmissione sono molti, alcuni più efficaci di altri. Tra questi, internet è diventato un potente strumento di comunicazione, il quale consente l'interazione tra chi naviga nel Web (ossia gli utenti) e una partecipazione attiva alla diffusione di informazioni. Nello specifico, esistono siti (chiamati di microblogging) in cui sono gli stessi utenti a decidere se un'informazione possa essere o meno inserita nella propria pagina personale. In questo caso, si è di fronte a una nuova "gestione dell'informazione", che può variare da utente a utente e può defluire in catene di propagazione (percorsi che compiono i dati e le notizie tra i navigatori del Web) dai risvolti spesso incerti. Ma esiste un modello che possa spiegare l'avanzata delle informazioni tra gli utenti? Se fosse possibile capirne la dinamica, si potrebbe venire a conoscenza di quali sono le informazioni più soggette a propagazione, gli utenti che più ne influenzano i percorsi, quante persone ne vengono a conoscenza o il tempo per cui resta attiva un'informazione, descrivendone una sorta di ciclo di vita. E' possibile nel mondo reale trovare delle caratteristiche ricorrenti in queste propagazioni, in modo da poter sviluppare un metodo universale per acquisirne e analizzarne le dinamiche? I siti di microblogging non seguono regole precise, perciò si va incontro a un insieme apparentemente casuale di informazioni che necessitano una chiave di lettura. Quest'ultima è proprio quella che si è cercata, con la speranza di poter sfruttare i risultati ottenuti nell'ipotesi di una futura gestione dell'informazione più consapevole. L'obiettivo della tesi è quello di identificare un modello che mostri con chiarezza quali sono i passaggi da affrontare nella ricerca di una logica di fondo nella gestione delle informazioni in rete.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La tesi consiste nella realizzazione di un programma che guida l’utente durante la visita delle attrazioni di una città: monumenti, musei, chiese, cinema etc. L’utente attraverso l’applicazione può visualizzare sulla mappa tutti i punti di interesse o solamente quelli che si trovano nelle sue vicinanze; può ottenere informazioni testuali, multimediali e vocali che descrivono ogni luogo, condividere commenti sui social network Facebook e Twitter, ottenere le indicazioni stradali e usare anche la realtà aumentata per avere una diversa percezione dell’ambiente che comunque rimane prevalentemente reale. Inoltre l’utente viene avvisato dall’applicazione quando un punto di interesse è nelle vicinanze.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

“Dì che ti piace questa pagina”. Questo è uno dei tanti inviti rivolti a chi, ogni giorno, naviga in Internet. Che si stia leggendo un articolo sul sito de La Repubblica, o visitando il blog di un personaggio famoso o di un politico, i riferimenti ai social network sono ormai una presenza costante nelle pagine web. La facilità di restare in contatto con i propri amici, e la possibilità di collegarsi in qualsiasi momento, hanno portato gli utenti del Web 2.0 ad intensificare le discussioni, ed a commentare gli argomenti ed i contenuti prodotti dagli altri in un continuo e complesso “botta e risposta”. È possibile che quest'ambiente abbia favorito lo sviluppo di una nuova prospettiva della Rete, inteso come un nuovo modo di vedersi e di rapportarsi con gli altri, di esprimersi e di condividere le proprie storie e la propria storia. Per approfondire queste tematiche si è deciso di osservare alcuni dei social networks più diffusi, tra i quali Twitter e Facebook e, per raccogliere i dati più significativi di quest'ultimo, di sviluppare un'apposita applicazione software. Questa tesi tratterà gli aspetti teorici che hanno portato questa ricerca su scala nazionale e l'analisi dei requisiti del progetto; approfondirà le dinamiche progettuali e lo sviluppo dell'applicazione entro i vincoli imposti da Facebook, integrando un questionario per l'utente alla lettura dei dati. Dopo la descrizione delle fasi di testing e deployment, l'elaborato includerà un'analisi preliminare dei dati ottenuti per mezzo di una pre-elaborazione all'interno dell'applicazione stessa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I sistemi di raccomandazione sono una tipologia di sistemi di filtraggio delle informazioni che cercano di prevedere la valutazione o la preferenza che l'utente potrebbe dare ad un elemento. Sono diventati molto comuni in questi ultimi anni e sono utilizzati da una vasta gamma di applicazioni, le più popolari riguardano film, musica, notizie, libri, articoli di ricerca e tag di social networking. Tuttavia, ci sono anche sistemi di raccomandazione per i ristoranti, servizi finanziari, assicurazioni sulla vita e persone (siti di appuntamenti online, seguaci di Twitter). Questi sistemi, tuttora oggetto di studi, sono già applicati in un'ampia gamma di settori, come ad esempio le piattaforme di scoperta dei contenuti, utilizzate on-line per aiutare gli utenti nella ricerca di trasmissioni televisive; oppure i sistemi di supporto alle decisioni che utilizzano sistemi di raccomandazione avanzati, basati sull'apprendimento delle conoscenze, per aiutare i fruitori del servizio nella soluzioni di problemi complessi. Inoltre, i sistemi di raccomandazione sono una valida alternativa agli algoritmi di ricerca in quanto aiutano gli utenti a scoprire elementi che potrebbero non aver trovato da soli. Infatti, sono spesso implementati utilizzando motori di ricerca che indicizzano dati non tradizionali.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studio ed analisi delle principali tecniche in ambito di Social Data Analysis. Progettazione e Realizzazione di una soluzione software implementata con linguaggio Java in ambiente Eclipse. Il software realizzato permette di integrare differenti servizi di API REST, per l'estrazione di dati sociali da Twitter, la loro memorizzazione in un database non-relazionale (realizzato con MongoDB), e la loro gestione. Inoltre permette di effettuare operazioni di classificazione di topic, e di analizzare dati complessivi sulle collection di dati estratti. Infine permette di visualizzare un albero delle "ricondivisioni", partendo da singoli tweet selezionati, ed una mappa geo-localizzata, contenente gli utenti coinvolti nella catena di ricondivisioni, e i relativi archi di "retweet".

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'informatica e le sue tecnologie nella società moderna si riassumono spesso in un assioma fuorviante: essa, infatti, è comunemente legata al concetto che ciò che le tecnologie ci offrono può essere accessibile da tutti e sfruttato, all'interno della propria quotidianità, in modi più o meno semplici. Anche se quello appena descritto è un obiettivo fondamentale del mondo high-tech, occorre chiarire subito una questione: l'informatica non è semplicemente tutto ciò che le tecnologie ci offrono, perchè questo pensiero sommario fa presagire ad un'informatica "generalizzante"; l'informatica invece si divide tra molteplici ambiti, toccando diversi mondi inter-disciplinari. L'importanza di queste tecnologie nella società moderna deve spingerci a porre domande, riflessioni sul perchè l'informatica, in tutte le sue sfaccettature, negli ultimi decenni, ha portato una vera e propria rivoluzione nelle nostre vite, nelle nostre abitudini, e non di meno importanza, nel nostro contesto lavorativo e aziendale, e non ha alcuna intenzione (per fortuna) di fermare le proprie possibilità di sviluppo. In questo trattato ci occuperemo di definire una particolare tecnica moderna relativa a una parte di quel mondo complesso che viene definito come "Intelligenza Artificiale". L'intelligenza Artificiale (IA) è una scienza che si è sviluppata proprio con il progresso tecnologico e dei suoi potenti strumenti, che non sono solo informatici, ma soprattutto teorico-matematici (probabilistici) e anche inerenti l'ambito Elettronico-TLC (basti pensare alla Robotica): ecco l'interdisciplinarità. Concetto che è fondamentale per poi affrontare il nocciolo del percorso presentato nel secondo capitolo del documento proposto: i due approcci possibili, semantico e probabilistico, verso l'elaborazione del linguaggio naturale(NLP), branca fondamentale di IA. Per quanto darò un buono spazio nella tesi a come le tecniche di NLP semantiche e statistiche si siano sviluppate nel tempo, verrà prestata attenzione soprattutto ai concetti fondamentali di questi ambiti, perché, come già detto sopra, anche se è fondamentale farsi delle basi e conoscere l'evoluzione di queste tecnologie nel tempo, l'obiettivo è quello a un certo punto di staccarsi e studiare il livello tecnologico moderno inerenti a questo mondo, con uno sguardo anche al domani: in questo caso, la Sentiment Analysis (capitolo 3). Sentiment Analysis (SA) è una tecnica di NLP che si sta definendo proprio ai giorni nostri, tecnica che si è sviluppata soprattutto in relazione all'esplosione del fenomeno Social Network, che viviamo e "tocchiamo" costantemente. L'approfondimento centrale della tesi verterà sulla presentazione di alcuni esempi moderni e modelli di SA che riguardano entrambi gli approcci (statistico e semantico), con particolare attenzione a modelli di SA che sono stati proposti per Twitter in questi ultimi anni, valutando quali sono gli scenari che propone questa tecnica moderna, e a quali conseguenze contestuali (e non) potrebbe portare questa particolare tecnica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Questa tesi riguarda lo sviluppo di un'applicazione che sfrutta le tecnologie del Web Semantico e del Text Mining. L'applicazione rappresenta l'estensione di un lavoro relativo ad una tesi precedente, aggiungendo ad esso la funzionalità di ricerca semantica. Tale funzionalità permette il recupero di informazioni che con il metodo di ricerca normale non verrebbero considerate. Per raggiungere questo risultato si utilizza WordNet, un database semantico-lessicale, e una libreria per la Latent Semantic Analysis, una tecnica del Text Mining.