2 resultados para tree size classes
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
The aim of present study is to define the general framework of Merluccius merluccius population structure, to estimate the growth rate and to assess the recruitment dynamics of juveniles from Northern and Central Adriatic, through otoliths analysis. The otoliths of hake specimens collected during the MedITS trawl survey in the 2012 in GSA 17, were cleaned and 102 otoliths out of 506 were embedded, sectioned, grindined and polished to obtain frontal and sagittal sections. The whole sample were analysed under stereomicroscope and optical microscope, with camera and connected to PC provided of an image analyses program. The frequency analysis of size classes and age revealed that the species is dominated by hake with >200mm TL and > one year old. The fish average size of M. merluccius at the end of the first year of life is about 199 mm TL. Allometrics analyses between fish TL and Feret (major axis), MiniFeret (minor axis), Area, Perimeter, showed a direct proportionality among lengths. Among the 88 otoliths sections analysed, the number of daily increments read ranged from 86 to 206, within 55 and 175mm TL range. The age estimate ranged from about 2-3 to 9 months and the growth rate from 20.99 to 27.15mm TL. The hatch-date distribution, obtained by back calculation, showed that the hatching occurs in November-March. In conclusion, strong preventive measures are needed for hake adults because the success of this species seems to be linked to deep water ecosystem protection where big spawners dwell.
Resumo:
Human activities strongly influence environmental processes, and while human domination increases, biodiversity progressively declines in ecosystems worldwide. High genetic and phenotypic variability ensures functionality and stability of ecosystem processes through time and increases the resilience and the adaptive capacity of populations and communities, while a reduction in functional diversity leads to a decrease in the ability to respond in a changing environment. Pollution is becoming one of the major threats in aquatic ecosystem, and pharmaceutical and personal care products (PPCPs) in particular are a relatively new group of environmental contaminants suspected to have adverse effects on aquatic organisms. There is still a lake of knowledge on the responses of communities to complex chemical mixtures in the environment. We used an individual-trait-based approach to assess the response of a phytoplankton community in a scenario of combined pollution and environmental change (steady increasing in temperature). We manipulated individual-level trait diversity directly (by filtering out size classes) and indirectly (through exposure to PPCPs mixture), and studied how reduction in trait-diversity affected community structure, production of biomass and the ability of the community to track a changing environment. We found that exposure to PPCPs slows down the ability of the community to respond to an increasing temperature. Our study also highlights how physiological responses (induced by PPCPs exposure) are important for ecosystem processes: although from an ecological point of view experimental communities converged to a similar structure, they were functionally different.