8 resultados para transparent conducting oxides,
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In the last years, new materials have been developed in the broad area of nanoscience. Among them, an emergent class characterized by excellent electrical conductivity properties as well as high optical transmittance in the visible region are TCOs (Transparent Conducting Oxides). Due to their versatile properties, they have found many applications in a lot of optoelectronic devices, such as solar cells, liquid crystal displays, touch-panel displays, gas sensors, to cite a few examples. Different research groups have studied and characterized the TCOs. In this context, a new synthetic method has been developed to produce FTO nanocrystals (Fluorine-doped Tin Oxide NCs) in Prof. Pinna’s lab at the Humboldt University in Berlin. FTO belongs to the TCO category, and they have been studied as a promising alternative to ITO NCs (Indium Tin Oxide) which represent the standard TCO material in terms of properties and performances. In this work, FTO NCs have been synthesized using the “benzyl alcohol route” (a non-aqueous sol-gel method) via microwave, which permits to produce FTO particles with good properties as revealed by the characterizations performed, employing a cheap, fast and clean method.
Resumo:
Solar fuels from CO2 is a topic of current large scientific and industrial interest. In particular, photo-electrochemical cells (PECs) represent today one of the most promising technology for storing sun energy as chemical bonds exploiting carbon dioxide as starting reagent. In this thesis, the possibility of using Aurivillius-type compounds for the production of solar fuels was deeply investigated. Aurivillius-type perovskites, with general formula Bi(n+1)Fe(n-3)Ti3O(3n+3), were synthesized and fully characterized to study the influence of the number of perovskite layers as well as of the synthesis parameters onto their final properties. In particular, 8 different systems were considered increasing the amount of iron and, as a consequence, the number of perovskite layers. These compounds were synthesized through a standard solid-state reaction method as well as via a sol-gel technique and characterized by XRD, SEM and BET analyses. The band gap value and the photocatalytic activity towards Rhodamine B decomposition were assessed as well. For each system, a screen-printing ink was formulated to be deposited as photo-electrodes onto transparent conducting supports. The photo-electrodes were morphologically characterized by XRD and SEM analysis, and their electrochemical properties (cyclic and linear voltammetry, EIS, Mott-Schottky analysis) were determined. Finally, the most promising materials were tested as photo-cathode inside PEC cell under different illumination conditions, to quantify their ability to convert CO2. The obtained results show the potentiality of Aurivillius-type compounds as innovative material for carbon dioxide photo-electrochemical reduction.
Resumo:
The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.
Resumo:
Due to the high price of natural oil and harmful effects of its usage, as the increase in emission of greenhouse gases, the industry focused in searching of sustainable types of the raw materials for production of chemicals. Ethanol, produced by fermentation of sugars, is one of the more interesting renewable materials for chemical manufacturing. There are numerous applications for the conversion of ethanol into commodity chemicals. In particular, the production of 1,3-butadiene whose primary source is ethanol using multifunctional catalysts is attractive. With the 25% of world rubber manufacturers utilizing 1,3-butadiene, there is an exigent need for its sustainable production. In this research, the conversion of ethanol in one-step process to 1,3-butadiene was studied. According to the literature, the mechanisms which were proposed to explain the way ethanol transforms into butadiene require to have both acid and basic sites. But still, there are a lot of debate on this topic. Thus, the aim of this research work is a better understanding of the reaction pathways with all the possible intermediates and products which lead to the formation of butadiene from ethanol. The particular interests represent the catalysts, based on different ratio Mg/Si in comparison to bare magnesia and silica oxides, in order to identify a good combination of acid/basic sites for the adsorption and conversion of ethanol. Usage of spectroscopictechniques are important to extract information that could be helpful for understanding the processes on the molecular level. The diffuse reflectance infrared spectroscopy coupled to mass spectrometry (DRIFT-MS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Whereas, mass spectrometry was used to monitor the desorbed products. The set of studied materials include MgO, Mg/Si=0.1, Mg/Si=2, Mg/Si=3, Mg/Si=9 and SiO2 which were also characterized by means of surface area measurements.
Resumo:
La scoperta dei semiconduttori amorfi ha segnato l’era della microelettronica su larga scala rendendo possibile il loro impiego nelle celle solari o nei display a matrice attiva. Infatti, mentre i semiconduttori a cristalli singoli non sono consoni a questo tipo di applicazioni e i s. policristallini presentano il problema dei bordi di grano, i film amorfi possono essere creati su larga scala (>1 m^2) a basse temperature (ad es. <400 °C) ottenendo performance soddisfacenti sia su substrati rigidi che flessibili. Di recente la ricerca sta compiendo un grande sforzo per estendere l’utilizzo di questa nuova elettronica flessibile e su larga scala ad ambienti soggetti a radiazioni ionizzanti, come lo sono i detector di radiazioni o l’elettronica usata in applicazioni spaziali (satelliti). A questa ricerca volge anche la mia tesi, che si confronta con la fabbricazione e la caratterizzazione di transistor a film sottili basati su ossidi semiconduttori ad alta mobilità e lo studio della loro resistenza ai raggi X. La micro-fabbricazione, ottimizzazione e caratterizzazione dei dispositivi è stata realizzata nei laboratori CENIMAT e CEMOP dell’Università Nova di Lisbona durante quattro mesi di permanenza. Tutti i dispositivi sono stati creati con un canale n di ossido di Indio-Gallio-Zinco (IGZO). Durante questo periodo è stato realizzato un dispositivo dalle ottime performance e con interessanti caratteristiche, una delle quali è la non variazione del comportamento capacitivo in funzione della frequenza e la formidabile resistenza alle radiazioni. Questo dispositivo presenta 114 nm di dielettrico, realizzato con sette strati alternati di SiO2/ Ta2O5. L’attività di ricerca svolta al Dipartimento di Fisica e Astronomia di Bologna riguarda prevalentemente lo studio degli effetti delle radiazioni ionizzanti su TFTs. Gli esperimenti hanno rivelato che i dispositivi godono di una buona stabilità anche se soggetti alle radiazioni. Infatti hanno mostrato performance pressoché inalterate anche dopo un’esposizione a 1 kGy di dose cumulativa di raggi X mantenendo circa costanti parametri fondamentali come la mobilità, il threshold voltage e la sub-threshold slope. Inoltre gli effetti dei raggi X sui dispositivi, così come parametri fondamentali quali la mobilità, si sono rivelati essere notevolmente influenzati dallo spessore del dielettrico.
Resumo:
L'elaborato tratta dell'ottimizzazione del processo di riduzione termica dell'ossido di grafene in termini di conduttività e trasmittanza ottica. Definiti gli standard di deposizione tramite spin-coating e riduzione termica, i film prodotti vengono caratterizzati tramite XPS, AFM, UPS, TGA, ne vengono testate la conducibilità, con e senza effetto di gate, e la trasmittanza ottica, ne si misura l'elasticità tramite spettroscopia di forza, tutto al fine di comprendere l'evoluzione del processo termico di riduzione e di individuare i parametri migliori al fine di progredire verso la produzione di elettrodi flessibili e trasparenti a base di grafen ossido ridotto.
Resumo:
This work is based on the study of new synthetic paths to obtain thioimidate N-oxides (TINOs) from D-ribose and to study their reactivity with the purpose to obtain ketonitrones. TINOs, aren’t well known molecules, but these enantiomerically pure backbones could be valuable intermediates in the synthesis of novel ketonitrones which are key intermediates in the synthesis of iminosugars. TINOs were discovered from the study of glucoraphanin, a particular glucosinolate, that unexpectedly cyclized into a TINO after desulfatation, by a spontaneous intramolecular Michael addition. The first part of this work was to synthetize the TINO 3 from D-ribose 1. The key step was the desilylative cyclisation of a suitably functionalized thiohydroximate 2. Based on precedent work developed in the laboratory, we could obtain the thiohydroximate from D-ribose. We then focused our studies on the cyclisation step trying to find the suitable substituents that could give the TINO in good yield by desilylative cyclisation. The second part of the project is to obtain ketonitrones 4 by palladiumcatalyzed coupling reaction.
Resumo:
Co-Al-Ox mixed metal oxides partially modified with Cu or Mg, as well as Ag were successfully prepared, characterized and evaluated as potential catalysts for the N2O decomposition. The materials were characterized by the following techniques: X-Ray Diffraction, Thermogravimetric Analysis (TGA), N2 Physisorption, Hydrogen Temperature-Programmed Reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). Ag-modified HT-derived mixed oxides showed enhanced activity compared to the undoped materials, the optimum composition was found for (1 wt.% Ag)CHT-Co3Al. The catalyst characterization studies suggested that the improved catalytic activity of Ag-promoted catalysts were mainly because of the altered redox properties of the materials.