2 resultados para thermal radiation
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Flaring has been widely used in the upstream operation of the oil and gas industry, both onshore and offshore. It is considered a safe and reliable way to protect assets from overpressure and the environment from toxic gas using combustion. However, there are drawbacks to using flares, such as vibration and thermal radiation. Excessive contact with thermal radiation is harmful to offshore personnel and equipment. Research organizations and companies have invested time and money to combat this. Many technologies have been developed so far to reduce the risk of thermal radiation, one of them being the water curtain system. Several tests were done to see the effectiveness of the water curtain system in mitigating thermal radiation in an offshore environment. Each test varied in the flare output, wind speed, and the size of water droplets size of the water curtain. Later, the results of each test were compared and analyzed. The results showed that a water curtain system could be a solution to excessive thermal radiation that comes from an offshore flare. Moreover, the water curtain with smaller water droplets diameter gives a more favorable result in reducing thermal radiation. These results suggest that, although it offers simplicity and efficiency, designing an efficient water curtain system requires deep study. Various conditions, such as wind speed, flare intensity, and the size of the water droplets, plays a vital role in the effectiveness of the water curtain system in attenuating thermal radiation.
Resumo:
Large-scale structures can be considered an interesting and useful "laboratory" to better investigate the Universe; in particular the filaments connecting clusters and superclusters of galaxies can be a powerful tool for this intent, since they are not virialised systems yet. The large structures in the Universe have been studied in different bands, in particular the present work takes into consideration the emission in the radio band. In the last years both compact and diffuse radio emission have been detected, revealing to be associated to single objects and clusters of galaxies respectively. The detection of these sources is important, because the radiation process is the synchrotron emission, which in turn is linked to the presence of a magnetic field: therefore studying these radio sources can help in investigating the magnetic field which permeates different portions of space. Furthermore, radio emission in optical filaments have been detected recently, opening new chances to further improve the understanding of structure formation. Filaments can be seen as the net which links clusters and superclusters. This work was made with the aim of investigating non-thermal properties in low-density regions, looking for possible filaments associated to the diffuse emission. The analysed sources are 0917+75, which is located at a redshift z = 0.125, and the double cluster system A399-A401, positioned at z = 0.071806 and z = 0.073664 respectively. Data were taken from VLA/JVLA observations, and reduced and calibrated with the package AIPS, following the standard procedure. Isocountour and polarisation maps were yielded, allowing to derive the main physical properties. Unfortunately, because of a low quality data for A399-A401, it was not possible to see any radio halo or bridge.