2 resultados para theoretical methods

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of homologation of bioethanol to butanol and higher alcohols via the Guerbet reaction was computationally and experimentally investigated. The catalytic pathway involves a ruthenium-based complex and a base co-catalyst which work simultaneously. Due to selectivity issues, secondary products were formed and high competition between main pathway and side reactions was recorded. Herein, the overall catalytic mechanism for all the processes involved in was investigated, also considering the principal side reactions, using density functional theory (DFT) methods and experiments to confirm theoretical outcomes. Due to the complexity of the reaction network, kinetic simulations were established from DFT results, confirming experimental products distribution and giving insights into the factors governing the reaction mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The benzoquinone was found as an effective co-catalyst in the ruthenium/NaOEt-catalyzed Guerbet reaction. The co-catalyst behavior has therefore been investigated through experimental and computational methods. The reaction products distribution shows that the reaction speed is improved by the benzoquinone supplement since the beginning of the process, having a minimal effect on the selectivity toward alcoholic species. DFT calculations were performed to investigate two hypotheses for the kinetic effects: i) a hydrogen storage mechanism or ii) a basic co-catalysis of 4-hydroxiphenolate. The most promising results were found for the latter hypothesis, where a new mixed mechanism for the aldol condensation step of the Guerbet process involves the hydroquinone (i.e. the reduced form of benzoquinone) as proton source instead of ethanol. This mechanism was found to be energetically more favorable than an aldol condensation in absence of additive, suggesting that the hydroquinone derived from benzoquinone could be the key species affecting the kinetics of the overall process. To verify this theoretical hypothesis, new phenol derivatives were tested as additives in the Guerbet reaction. The outcomes confirmed that an aromatic acid (stronger than ethanol) could improve the reaction kinetics. Lastly, theoretical products distributions were simulated and compared to the experimental one, using the DFT computations to build the kinetic models.