2 resultados para texture analysis
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Il seguente lavoro di tesi si è concentrato sull'analisi statistica dei dati prodotti dall'imaging di risonanza magnetica di pazienti affetti da tumori di alto grado, in particolare glioblastoma multiforme. Le tipologie di acquisizione d'immagine utilizzate sono state l'imaging pesato in T1 e il Diffusion-Weighted Imaging (DWI). Lo studio è stato suddiviso in due fasi: nella prima è stato considerato un campione di pazienti affetti da glioblastoma multiforme che, dopo il trattamento, avessero manifestato una ricaduta della malattia; per questi pazienti è stato quantificato in che modo la dose erogata durante la terapia si sia distribuita sul target del trattamento, in particolare nella porzione di tessuto in cui andrà a svilupparsi la recidiva. Nella seconda fase, è stato selezionato un campione più ristretto che disponesse, per entrambe le modalità di imaging, di un'acquisizione pre-terapia e di un numero sufficiente di esami di follow up; questo al fine di seguire retrospettivamente l'evoluzione della patologia e analizzare tramite metodi statistici provenienti anche dalla texture analysis, i dati estratti dalle regioni tumorali. Entrambe le operazioni sono state svolte tramite la realizzazione di software dedicati, scritti in linguaggio Matlab. Nel primo capitolo vengono fornite le informazioni di base relative ai tumori cerebrali, con un'attenzione particolare al glioblastoma multiforme e alle sue modalità di trattamento. Nel secondo capitolo viene fatta una panoramica della fisica dell'imaging di risonanza magnetica e delle tecniche di formazione delle immagini, con un'ampia sezione è dedicata all'approfondimento dell'imaging in diffusione. Nel terzo capitolo viene descritto il progetto, i campioni e gli strumenti statistici e di texture analysis utilizzati in questo studio. Il quarto capitolo è dedicato alla descrizione puntuale dei software realizzati durante questo lavoro e nel quinto vengono mostrati i risultati ottenuti dall'applicazione di questi ultimi ai campioni di pazienti esaminati.
Resumo:
Questa tesi si propone di innovare lo stato dell’arte dei metodi di analisi dell’eterogeneità in lesioni polmonari attualmente utilizzati, affiancando l’analisi funzionale (emodinamica) a quella morfologica, grazie allo sviluppo di nuove feature specifiche. Grazie alla collaborazione tra il Computer Vision Group (CVG) dell’Università di Bologna e l’Unità Operativa di Radiologia dell’IRCCS-IRST di Meldola (Istituto di Ricovero e Cura a Carattere Scientifico – Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori), è stato possibile analizzare un adeguato numero di casi reali di pazienti affetti da lesioni polmonari primitive, effettuando un’analisi dell’eterogeneità sia su sequenze di immagini TC baseline sia contrast-enhanced, consentendo quindi un confronto tra eterogeneità morfologica e funzionale. I risultati ottenuti sono infine discussi sulla base del confronto con le considerazioni di natura clinica effettuate in cieco da due esperti radiologi dell’IRCCS-IRST.