3 resultados para testing method
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Structural Health Monitoring (SHM) is an emerging area of research associated to improvement of maintainability and the safety of aerospace, civil and mechanical infrastructures by means of monitoring and damage detection. Guided wave structural testing method is an approach for health monitoring of plate-like structures using smart material piezoelectric transducers. Among many kinds of transducers, the ones that have beam steering feature can perform more accurate surface interrogation. A frequency steerable acoustic transducer (FSATs) is capable of beam steering by varying the input frequency and consequently can detect and localize damage in structures. Guided wave inspection is typically performed through phased arrays which feature a large number of piezoelectric transducers, complexity and limitations. To overcome the weight penalty, the complex circuity and maintenance concern associated with wiring a large number of transducers, new FSATs are proposed that present inherent directional capabilities when generating and sensing elastic waves. The first generation of Spiral FSAT has two main limitations. First, waves are excited or sensed in one direction and in the opposite one (180 ̊ ambiguity) and second, just a relatively rude approximation of the desired directivity has been attained. Second generation of Spiral FSAT is proposed to overcome the first generation limitations. The importance of simulation tools becomes higher when a new idea is proposed and starts to be developed. The shaped transducer concept, especially the second generation of spiral FSAT is a novel idea in guided waves based of Structural Health Monitoring systems, hence finding a simulation tool is a necessity to develop various design aspects of this innovative transducer. In this work, the numerical simulation of the 1st and 2nd generations of Spiral FSAT has been conducted to prove the directional capability of excited guided waves through a plate-like structure.
Resumo:
La tesi di laurea presentata si inserisce nell’ampio contesto della Sicurezza Informatica, in particolare tratta il problema del testing dei sistemi di sicurezza concepiti per contrapporsi alle odierne minacce: gli attacchi mirati (Targeted Attacks) ed in generale le minacce avanzate persistenti (Advanced Persistent Threats). Il principale obiettivo del lavoro svolto è lo sviluppo e la discussione di una metodologia di test per sistemi di sicurezza focalizzati su questo genere di problemi. Le linee guida proposte hanno lo scopo di aiutare a colmare il divario tra quello che viene testato e quello che in realt`a deve essere affrontato realmente. Le attività svolte durante la preparazione della tesi sono state sia di tipo teorico, per quanto concerne lo sviluppo di una metodologia per affrontare al meglio il testing di sistemi di sicurezza a fronte di attacchi mirati, che ne di tipo sperimentale in quanto si sono utilizzati tali concetti per lo svolgimento di test su più strumenti di difesa in uno scenario d’interesse reale.
Resumo:
In areas of seasonal frost, frost susceptibility composed by frost heaving during the winter and thaw softening during the spring is one of the most dangerous phenomenon for transportation, road and railway infrastructure. Therefore, the need for frost protection layer becomes imperative. The purpose of frost protection layer is to prevent frost from penetrating down through the pavement and into the sub-soils. Frost susceptible soils under the road can be cause damages on the roads or other structures due to frost heave or reduced capacity characteristics thaw period. "Frost heave" is the term given to the upwards displacement of the ground surface caused by the formation of ice within soils or aggregates (Rempel et al., 2004). Nowadays in Scandinavia the most common material used in frost protection layer in the pavement structure of roads and in the ballast of the railway tracks are coarse-grain crushed rocks aggregates. Based on the capillary rise, the mechanics of frost heave phenomenon is based on the interaction between aggregates and water, as suggested by Konrad and Lemieux in 2005 that said that the fraction of material below the 0.063 mm sieve for coarse-grained soils must be controlled so as to reduce the sensitivity to frost heave. The study conducted in this thesis project is divided in two parts: - the analysis of the coarse grained aggregates used in frost protection layer in Norway; - the analysis of the frost heave phenomenon in the laboratory under known boundary conditions, through the use of the most widely used method, the frost heave test, in” closed system” (without access of water).