2 resultados para temporal visualization techniques

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, Deep Learning techniques have shown to perform well on a large variety of problems both in Computer Vision and Natural Language Processing, reaching and often surpassing the state of the art on many tasks. The rise of deep learning is also revolutionizing the entire field of Machine Learning and Pattern Recognition pushing forward the concepts of automatic feature extraction and unsupervised learning in general. However, despite the strong success both in science and business, deep learning has its own limitations. It is often questioned if such techniques are only some kind of brute-force statistical approaches and if they can only work in the context of High Performance Computing with tons of data. Another important question is whether they are really biologically inspired, as claimed in certain cases, and if they can scale well in terms of "intelligence". The dissertation is focused on trying to answer these key questions in the context of Computer Vision and, in particular, Object Recognition, a task that has been heavily revolutionized by recent advances in the field. Practically speaking, these answers are based on an exhaustive comparison between two, very different, deep learning techniques on the aforementioned task: Convolutional Neural Network (CNN) and Hierarchical Temporal memory (HTM). They stand for two different approaches and points of view within the big hat of deep learning and are the best choices to understand and point out strengths and weaknesses of each of them. CNN is considered one of the most classic and powerful supervised methods used today in machine learning and pattern recognition, especially in object recognition. CNNs are well received and accepted by the scientific community and are already deployed in large corporation like Google and Facebook for solving face recognition and image auto-tagging problems. HTM, on the other hand, is known as a new emerging paradigm and a new meanly-unsupervised method, that is more biologically inspired. It tries to gain more insights from the computational neuroscience community in order to incorporate concepts like time, context and attention during the learning process which are typical of the human brain. In the end, the thesis is supposed to prove that in certain cases, with a lower quantity of data, HTM can outperform CNN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The our reality is characterized by a constant progress and, to follow that, people need to stay up to date on the events. In a world with a lot of existing news, search for the ideal ones may be difficult, because the obstacles that make it arduous will be expanded more and more over time, due to the enrichment of data. In response, a great help is given by Information Retrieval, an interdisciplinary branch of computer science that deals with the management and the retrieval of the information. An IR system is developed to search for contents, contained in a reference dataset, considered relevant with respect to the need expressed by an interrogative query. To satisfy these ambitions, we must consider that most of the developed IR systems rely solely on textual similarity to identify relevant information, defining them as such when they include one or more keywords expressed by the query. The idea studied here is that this is not always sufficient, especially when it's necessary to manage large databases, as is the web. The existing solutions may generate low quality responses not allowing, to the users, a valid navigation through them. The intuition, to overcome these limitations, has been to define a new concept of relevance, to differently rank the results. So, the light was given to Temporal PageRank, a new proposal for the Web Information Retrieval that relies on a combination of several factors to increase the quality of research on the web. Temporal PageRank incorporates the advantages of a ranking algorithm, to prefer the information reported by web pages considered important by the context itself in which they reside, and the potential of techniques belonging to the world of the Temporal Information Retrieval, exploiting the temporal aspects of data, describing their chronological contexts. In this thesis, the new proposal is discussed, comparing its results with those achieved by the best known solutions, analyzing its strengths and its weaknesses.