9 resultados para template overlap method top ATLAS
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
L’acceleratore di protoni e ioni pesanti LHC costruito presso i laboratori del CERN di Ginevra permette sviluppi straordinari nel campo della fisica delle particelle alle alte energie. Tra le diverse linee di ricerca attualmente operative lo studio del quark top riveste un ruolo di particolare rilevanza. Infatti, l’elevata energia accessibile alla macchina rende possibile la raccolta di campioni di elevata statistica necessari per uno studio dettagliato delle proprietà del quark top, la particella più pesante fino ad oggi nota. In particolare in questa tesi viene studiato, e confrontato con l'analisi standard, un nuovo metodo, chiamato “template overlap method”, per la selezione di quark top prodotti ad alta energia. L'obiettivo è valutare se questo nuovo metodo permetterà una migliore precisione nella misura della sezione d'urto differenziale di produzione di coppie tt nelle prossime prese dati dove l'energia nel centro di massa raggiungerà i 13 TeV. L'analisi, per ora, è stata svolta su dati montecarlo simulati per l'esperimento ATLAS ad una energia del centro di massa di 8 TeV. I risultati ottenuti sono incoraggianti perchè mostrano un'alta efficienza di selezione all'aumentare dell'energia dei prodotti di decadimento del top.
Resumo:
Since its discovery, top quark has represented one of the most investigated field in particle physics. The aim of this thesis is the reconstruction of hadronic top with high transverse momentum (boosted) with the Template Overlap Method (TOM). Because of the high energy, the decay products of boosted tops are partially or totally overlapped and thus they are contained in a single large radius jet (fat-jet). TOM compares the internal energy distributions of the candidate fat-jet to a sample of tops obtained by a MC simulation (template). The algorithm is based on the definition of an overlap function, which quantifies the level of agreement between the fat-jet and the template, allowing an efficient discrimination of signal from the background contributions. A working point has been decided in order to obtain a signal efficiency close to 90% and a corresponding background rejection at 70%. TOM performances have been tested on MC samples in the muon channel and compared with the previous methods present in literature. All the methods will be merged in a multivariate analysis to give a global top tagging which will be included in ttbar production differential cross section performed on the data acquired in 2012 at sqrt(s)=8 TeV in high phase space region, where new physics processes could be possible. Due to its peculiarity to increase the pT, the Template Overlap Method will play a crucial role in the next data taking at sqrt(s)=13 TeV, where the almost totality of the tops will be produced at high energy, making the standard reconstruction methods inefficient.
Resumo:
Il documento contiene un'analisi sull'accordo fra le misure delle sezioni d’urto differenziali del sistema top-antitop registrate nel 2011 dall’esperimento ATLAS a un'energia del centro di massa di 7 TeV e le predizioni teoriche.
Resumo:
The Large Hadron Collider, located at the CERN laboratories in Geneva, is the largest particle accelerator in the world. One of the main research fields at LHC is the study of the Higgs boson, the latest particle discovered at the ATLAS and CMS experiments. Due to the small production cross section for the Higgs boson, only a substantial statistics can offer the chance to study this particle properties. In order to perform these searches it is desirable to avoid the contamination of the signal signature by the number and variety of the background processes produced in pp collisions at LHC. Much account assumes the study of multivariate methods which, compared to the standard cut-based analysis, can enhance the signal selection of a Higgs boson produced in association with a top quark pair through a dileptonic final state (ttH channel). The statistics collected up to 2012 is not sufficient to supply a significant number of ttH events; however, the methods applied in this thesis will provide a powerful tool for the increasing statistics that will be collected during the next LHC data taking.
Resumo:
Il Modello Standard è attualmente la teoria che meglio spiega il comportamento della fisica subnucleare, includendo la definizione delle particelle e di tre delle quattro forze fondamentali presenti in natura; risulta però una teoria incompleta sulle cui integrazioni i fisici stanno lavorando in diverse direzioni: uno degli approcci più promettenti nella ricerca di nuova fisica risulta essere quello delle teorie di campo efficaci. Il vertice di interazione del processo di produzione di coppie di quark top dello stesso segno a partire da protoni è fortemente soppresso nel Modello Standard e deve quindi essere interpretato con le teorie di campo efficaci. Il presente elaborato si concentra su questo nuovo approccio per la ricerca di quark top same-sign e si focalizza sull’utilizzo di una rete neurale per discriminare il segnale dal fondo. L’obiettivo è capire se le prestazioni di quest’ultima cambino quando le vengono fornite in ingresso variabili di diversi livelli di ricostruzione. Utilizzando una rete neurale ottimizzata per la discriminazione del segnale dal fondo, le si sono presentati tre set di variabili per l’allenamento: uno di alto livello, il secondo strettamente di basso livello, il terzo copia del secondo con aggiunta delle due variabili principali di b-tagging. Si è dimostrato che la performance della rete in termini di classificazione segnale-fondo rimane pressoché inalterata: la curva ROC presenta aree sottostanti le curve pressoché identiche. Si è notato inoltre che nel caso del set di variabili di basso livello, la rete neurale classifica come input più importanti gli angoli azimutali dei leptoni nonostante questi abbiano distribuzioni identiche tra segnale e fondo: ciò avviene in quanto la rete neurale è in grado di sfruttare le correlazioni tra le variabili come caratteristica discriminante. Questo studio preliminare pone le basi per l’ottimizzazione di un approccio multivariato nella ricerca di eventi con due top dello stesso segno prodotti a LHC.
Resumo:
Top quark studies play an important role in the physics program of the Large Hadron Collider (LHC). The energy and luminosity reached allow the acquisition of a large amount of data especially in kinematic regions never studied before. In this thesis is presented the measurement of the ttbar production differential cross section on data collected by ATLAS in 2012 in proton proton collisions at \sqrt{s} = 8 TeV, corresponding to an integrated luminosity of 20.3 fb^{−1}. The measurement is performed for ttbar events in the semileptonic channel where the hadronically decaying top quark has a transverse momentum above 300 GeV. The hadronic top quark decay is reconstructed as a single large radius jet and identified using jet substructure properties. The final differential cross section result has been compared with several theoretical distributions obtaining a discrepancy of about the 25% between data and predictions, depending on the MC generator. Furthermore the kinematic distributions of the ttbar production process are very sensitive to the choice of the parton distribution function (PDF) set used in the simulations and could provide constraints on gluons PDF. In particular in this thesis is performed a systematic study on the PDF of the protons, varying several PDF sets and checking which one better describes the experimental distributions. The boosted techniques applied in this measurement will be fundamental in the next data taking at \sqrt{s}=13 TeV when will be produced a large amount of heavy particles with high momentum.
Resumo:
The primary goal of this work is related to the extension of an analytic electro-optical model. It will be used to describe single-junction crystalline silicon solar cells and a silicon/perovskite tandem solar cell in the presence of light-trapping in order to calculate efficiency limits for such a device. In particular, our tandem system is composed by crystalline silicon and a perovskite structure material: metilammoniumleadtriiodide (MALI). Perovskite are among the most convenient materials for photovoltaics thanks to their reduced cost and increasing efficiencies. Solar cell efficiencies of devices using these materials increased from 3.8% in 2009 to a certified 20.1% in 2014 making this the fastest-advancing solar technology to date. Moreover, texturization increases the amount of light which can be absorbed through an active layer. Using Green’s formalism it is possible to calculate the photogeneration rate of a single-layer structure with Lambertian light trapping analytically. In this work we go further: we study the optical coupling between the two cells in our tandem system in order to calculate the photogeneration rate of the whole structure. We also model the electronic part of such a device by considering the perovskite top cell as an ideal diode and solving the drift-diffusion equation with appropriate boundary conditions for the silicon bottom cell. We have a four terminal structure, so our tandem system is totally unconstrained. Then we calculate the efficiency limits of our tandem including several recombination mechanisms such as Auger, SRH and surface recombination. We focus also on the dependence of the results on the band gap of the perovskite and we calculare an optimal band gap to optimize the tandem efficiency. The whole work has been continuously supported by a numerical validation of out analytic model against Silvaco ATLAS which solves drift-diffusion equations using a finite elements method. Our goal is to develop a simpler and cheaper, but accurate model to study such devices.
Resumo:
Electric cars are increasingly popular due to a transition of mobility towards more sustainable forms. From an increasingly green and pollution reduction perspective, there are more and more incentives that encourage customers to invest in electric cars. Using the Industrial Design and Structure (IDeS) research method, this project has the aim to design a new electric compact SUV suitable for all people who live in the city, and for people who move outside urban areas. In order to achieve the goal of developing a new car in the industrial automotive environment, the compact SUV segment was chosen because it is a vehicle very requested by the costumers and it is successful in the market due to its versatility. IDeS is a combination of innovative and advanced systematic approaches used to set up a new industrial project. The IDeS methodology is sequentially composed of Quality Function Deployment (QFD), Benchmarking (BM), Top-Flop analysis (TFA), Stylistic Design Engineering (SDE), Design for X, Prototyping, Testing, Budgeting, and Planning. The work is based on a series of steps and the sequence of these must be meticulously scheduled, imposing deadlines along the work. Starting from an analysis of the market and competitors, the study of the best and worst existing parameters in the competitor’s market is done, arriving at the idea of a better product in terms of numbers and innovation. After identifying the characteristics that the new car should have, the other step is the styling part, with the definition of the style and the design of the machine on a 3D CAD. Finally, it switches to the prototyping and testing phase to see if the product is able to work. Ultimately, intending to place the car on the market, it is essential to estimate the necessary budget for a possible investment in this project.
Resumo:
The aim of this study, conducted in collaboration with Lawrence Technological University in Detroit, is to create, through the method of the Industrial Design Structure (IDeS), a new concept for a sport-coupe car, based on a restyling of a retro model (Ford Mustang 1967). To date, vintage models of cars always arouse great interest both for the history behind them and for the classic and elegant style. Designing a model of a vehicle that can combine the charm of retro style with the innovation and comfort of modern cars would allow to meet the needs and desires of a large segment of the market that today is forced to choose between past and future. Thanks to a well-conceived concept car an automaker company is able to express its future policy, to make a statement of intent as, such a prototype, ticks all the boxes, from glamour and visual wow-factor to technical intrigue and design fascination. IDeS is an approach that makes use of many engineering tools to realize a study developed on several steps that must be meticulously organized and timed. With a deep analysis of the trends dominating the automotive industry it is possible to identify a series of product requirements using quality function deployment (QFD). The considerations from this first evaluation led to the definition of the technical specifications via benchmarking (BM) and top-flop analysis (TFA). Then, the structured methodology of stylistic design engineering (SDE) is applied through six phases: (1) stylistic trends analysis; (2) sketches; (3) 2D CAD drawings; (4) 3D CAD models; (5) virtual prototyping; (6) solid stylistic model. Finally, Developing the IDeS method up to the final stages of Prototypes and Testing you get a product as close as possible to the ideal vehicle conceptualized in the initial analysis.