3 resultados para team learning approach in education

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 1d extended Hubbard model with soft-shoulder potential has proved itself to be very difficult to study due its non solvability and to competition between terms of the Hamiltonian. Given this, we tried to investigate its phase diagram for filling n=2/5 and range of soft-shoulder potential r=2 by using Machine Learning techniques. That led to a rich phase diagram; calling U, V the parameters associated to the Hubbard potential and the soft-shoulder potential respectively, we found that for V<5 and U>3 the system is always in Tomonaga Luttinger Liquid phase, then becomes a Cluster Luttinger Liquid for 5<V<7 (with different block structure depending on the relative values of U and V), and finally undergoes a general crystallization or V>7, with a quasi-perfect crystal in the U<3V/2 and U>5 region. Finally we found that for U<5 and V>2-3 the system shall maintain the Cluster Luttinger Liquid structure, with a residual in-block single particle mobility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times, a significant research effort has been focused on how deformable linear objects (DLOs) can be manipulated for real world applications such as assembly of wiring harnesses for the automotive and aerospace sector. This represents an open topic because of the difficulties in modelling accurately the behaviour of these objects and simulate a task involving their manipulation, considering a variety of different scenarios. These problems have led to the development of data-driven techniques in which machine learning techniques are exploited to obtain reliable solutions. However, this approach makes the solution difficult to be extended, since the learning must be replicated almost from scratch as the scenario changes. It follows that some model-based methodology must be introduced to generalize the results and reduce the training effort accordingly. The objective of this thesis is to develop a solution for the DLOs manipulation to assemble a wiring harness for the automotive sector based on adaptation of a base trajectory set by means of reinforcement learning methods. The idea is to create a trajectory planning software capable of solving the proposed task, reducing where possible the learning time, which is done in real time, but at the same time presenting suitable performance and reliability. The solution has been implemented on a collaborative 7-DOFs Panda robot at the Laboratory of Automation and Robotics of the University of Bologna. Experimental results are reported showing how the robot is capable of optimizing the manipulation of the DLOs gaining experience along the task repetition, but showing at the same time a high success rate from the very beginning of the learning phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, product development in all its phases plays a fundamental role in the industrial chain. The need for a company to compete at high levels, the need to be quick in responding to market demands and therefore to be able to engineer the product quickly and with a high level of quality, has led to the need to get involved in new more advanced methods/ processes. In recent years, we are moving away from the concept of 2D-based design and production and approaching the concept of Model Based Definition. By using this approach, increasingly complex systems turn out to be easier to deal with but above all cheaper in obtaining them. Thanks to the Model Based Definition it is possible to share data in a lean and simple way to the entire engineering and production chain of the product. The great advantage of this approach is precisely the uniqueness of the information. In this specific thesis work, this approach has been exploited in the context of tolerances with the aid of CAD / CAT software. Tolerance analysis or dimensional variation analysis is a way to understand how sources of variation in part size and assembly constraints propagate between parts and assemblies and how that range affects the ability of a project to meet its requirements. It is critically important to note how tolerance directly affects the cost and performance of products. Worst Case Analysis (WCA) and Statistical analysis (RSS) are the two principal methods in DVA. The thesis aims to show the advantages of using statistical dimensional analysis by creating and examining various case studies, using PTC CREO software for CAD modeling and CETOL 6σ for tolerance analysis. Moreover, it will be provided a comparison between manual and 3D analysis, focusing the attention to the information lost in the 1D case. The results obtained allow us to highlight the need to use this approach from the early stages of the product design cycle.