3 resultados para supportive learning environments
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
Reinforcement learning is a particular paradigm of machine learning that, recently, has proved times and times again to be a very effective and powerful approach. On the other hand, cryptography usually takes the opposite direction. While machine learning aims at analyzing data, cryptography aims at maintaining its privacy by hiding such data. However, the two techniques can be jointly used to create privacy preserving models, able to make inferences on the data without leaking sensitive information. Despite the numerous amount of studies performed on machine learning and cryptography, reinforcement learning in particular has never been applied to such cases before. Being able to successfully make use of reinforcement learning in an encrypted scenario would allow us to create an agent that efficiently controls a system without providing it with full knowledge of the environment it is operating in, leading the way to many possible use cases. Therefore, we have decided to apply the reinforcement learning paradigm to encrypted data. In this project we have applied one of the most well-known reinforcement learning algorithms, called Deep Q-Learning, to simple simulated environments and studied how the encryption affects the training performance of the agent, in order to see if it is still able to learn how to behave even when the input data is no longer readable by humans. The results of this work highlight that the agent is still able to learn with no issues whatsoever in small state spaces with non-secure encryptions, like AES in ECB mode. For fixed environments, it is also able to reach a suboptimal solution even in the presence of secure modes, like AES in CBC mode, showing a significant improvement with respect to a random agent; however, its ability to generalize in stochastic environments or big state spaces suffers greatly.
Resumo:
Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors is essential in performing localization. This makes the time of arrival (ToA) an important piece of information to retrieve from the AE signal. Generally, this is determined using statistical methods such as the Akaike Information Criterion (AIC) which is particularly prone to errors in the presence of noise. And given that the structures of interest are surrounded with harsh environments, a way to accurately estimate the arrival time in such noisy scenarios is of particular interest. In this work, two new methods are presented to estimate the arrival times of AE signals which are based on Machine Learning. Inspired by great results in the field, two models are presented which are Deep Learning models - a subset of machine learning. They are based on Convolutional Neural Network (CNN) and Capsule Neural Network (CapsNet). The primary advantage of such models is that they do not require the user to pre-define selected features but only require raw data to be given and the models establish non-linear relationships between the inputs and outputs. The performance of the models is evaluated using AE signals generated by a custom ray-tracing algorithm by propagating them on an aluminium plate and compared to AIC. It was found that the relative error in estimation on the test set was < 5% for the models compared to around 45% of AIC. The testing process was further continued by preparing an experimental setup and acquiring real AE signals to test on. Similar performances were observed where the two models not only outperform AIC by more than a magnitude in their average errors but also they were shown to be a lot more robust as compared to AIC which fails in the presence of noise.
Resumo:
A global italian pharmaceutical company has to provide two work environments that favor different needs. The environments will allow to develop solutions in a controlled, secure and at the same time in an independent manner on a state-of-the-art enterprise cloud platform. The need of developing two different environments is dictated by the needs of the working units. Indeed, the first environment is designed to facilitate the creation of application related to genomics, therefore, designed more for data-scientists. This environment is capable of consuming, producing, retrieving and incorporating data, furthermore, will support the most used programming languages for genomic applications (e.g., Python, R). The proposal was to obtain a pool of ready-togo Virtual Machines with different architectures to provide best performance based on the job that needs to be carried out. The second environment has more of a traditional trait, to obtain, via ETL (Extract-Transform-Load) process, a global datamodel, resembling a classical relational structure. It will provide major BI operations (e.g., analytics, performance measure, reports, etc.) that can be leveraged both for application analysis or for internal usage. Since, both architectures will maintain large amounts of data regarding not only pharmaceutical informations but also internal company informations, it would be possible to digest the data by reporting/ analytics tools and also apply data-mining, machine learning technologies to exploit intrinsic informations. The thesis work will introduce, proposals, implementations, descriptions of used technologies/platforms and future works of the above discussed environments.