3 resultados para supply chains
em AMS Tesi di Laurea - Alm@DL - Università di Bologna
Resumo:
In recent years, global supply chains have increasingly suffered from reliability issues due to various external and difficult to-manage events. The following paper aims to build an integrated approach for the design of a Supply Chain under the risk of disruption and demand fluctuation. The study is divided in two parts: a mathematical optimization model, to identify the optimal design and assignments customer-facility, and a discrete-events simulation of the resulting network. The first one describes a model in which plant location decisions are influenced by variables such as distance to customers, investments needed to open plants and centralization phenomena that help contain the risk of demand variability (Risk Pooling). The entire model has been built with a proactive approach to manage the risk of disruptions assigning to each customer two types of open facilities: one that will serve it under normal conditions and a back-up facility, which comes into operation when the main facility has failed. The study is conducted on a relatively small number of instances due to the computational complexity, a matheuristic approach can be found in part A of the paper to evaluate the problem with a larger set of players. Once the network is built, a discrete events Supply Chain simulation (SCS) has been implemented to analyze the stock flow within the facilities warehouses, the actual impact of disruptions and the role of the back-up facilities which suffer a great stress on their inventory due to a large increase in demand caused by the disruptions. Therefore, simulation follows a reactive approach, in which customers are redistributed among facilities according to the interruptions that may occur in the system and to the assignments deriving from the design model. Lastly, the most important results of the study will be reported, analyzing the role of lead time in a reactive approach for the occurrence of disruptions and comparing the two models in terms of costs.
Resumo:
Globalization has increased the pressure on organizations and companies to operate in the most efficient and economic way. This tendency promotes that companies concentrate more and more on their core businesses, outsource less profitable departments and services to reduce costs. By contrast to earlier times, companies are highly specialized and have a low real net output ratio. For being able to provide the consumers with the right products, those companies have to collaborate with other suppliers and form large supply chains. An effect of large supply chains is the deficiency of high stocks and stockholding costs. This fact has lead to the rapid spread of Just-in-Time logistic concepts aimed minimizing stock by simultaneous high availability of products. Those concurring goals, minimizing stock by simultaneous high product availability, claim for high availability of the production systems in the way that an incoming order can immediately processed. Besides of design aspects and the quality of the production system, maintenance has a strong impact on production system availability. In the last decades, there has been many attempts to create maintenance models for availability optimization. Most of them concentrated on the availability aspect only without incorporating further aspects as logistics and profitability of the overall system. However, production system operator’s main intention is to optimize the profitability of the production system and not the availability of the production system. Thus, classic models, limited to represent and optimize maintenance strategies under the light of availability, fail. A novel approach, incorporating all financial impacting processes of and around a production system, is needed. The proposed model is subdivided into three parts, maintenance module, production module and connection module. This subdivision provides easy maintainability and simple extendability. Within those modules, all aspect of production process are modeled. Main part of the work lies in the extended maintenance and failure module that offers a representation of different maintenance strategies but also incorporates the effect of over-maintaining and failed maintenance (maintenance induced failures). Order release and seizing of the production system are modeled in the production part. Due to computational power limitation, it was not possible to run the simulation and the optimization with the fully developed production model. Thus, the production model was reduced to a black-box without higher degree of details.