7 resultados para supervised neighbor embedding

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopo lo sviluppo dei primi casi di Covid-19 in Cina nell’autunno del 2019, ad inizio 2020 l’intero pianeta è precipitato in una pandemia globale che ha stravolto le nostre vite con conseguenze che non si vivevano dall’influenza spagnola. La grandissima quantità di paper scientifici in continua pubblicazione sul coronavirus e virus ad esso affini ha portato alla creazione di un unico dataset dinamico chiamato CORD19 e distribuito gratuitamente. Poter reperire informazioni utili in questa mole di dati ha ulteriormente acceso i riflettori sugli information retrieval systems, capaci di recuperare in maniera rapida ed efficace informazioni preziose rispetto a una domanda dell'utente detta query. Di particolare rilievo è stata la TREC-COVID Challenge, competizione per lo sviluppo di un sistema di IR addestrato e testato sul dataset CORD19. Il problema principale è dato dal fatto che la grande mole di documenti è totalmente non etichettata e risulta dunque impossibile addestrare modelli di reti neurali direttamente su di essi. Per aggirare il problema abbiamo messo a punto nuove soluzioni self-supervised, a cui abbiamo applicato lo stato dell'arte del deep metric learning e dell'NLP. Il deep metric learning, che sta avendo un enorme successo soprattuto nella computer vision, addestra il modello ad "avvicinare" tra loro immagini simili e "allontanare" immagini differenti. Dato che sia le immagini che il testo vengono rappresentati attraverso vettori di numeri reali (embeddings) si possano utilizzare le stesse tecniche per "avvicinare" tra loro elementi testuali pertinenti (e.g. una query e un paragrafo) e "allontanare" elementi non pertinenti. Abbiamo dunque addestrato un modello SciBERT con varie loss, che ad oggi rappresentano lo stato dell'arte del deep metric learning, in maniera completamente self-supervised direttamente e unicamente sul dataset CORD19, valutandolo poi sul set formale TREC-COVID attraverso un sistema di IR e ottenendo risultati interessanti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most of the existing open-source search engines, utilize keyword or tf-idf based techniques to find relevant documents and web pages relative to an input query. Although these methods, with the help of a page rank or knowledge graphs, proved to be effective in some cases, they often fail to retrieve relevant instances for more complicated queries that would require a semantic understanding to be exploited. In this Thesis, a self-supervised information retrieval system based on transformers is employed to build a semantic search engine over the library of Gruppo Maggioli company. Semantic search or search with meaning can refer to an understanding of the query, instead of simply finding words matches and, in general, it represents knowledge in a way suitable for retrieval. We chose to investigate a new self-supervised strategy to handle the training of unlabeled data based on the creation of pairs of ’artificial’ queries and the respective positive passages. We claim that by removing the reliance on labeled data, we may use the large volume of unlabeled material on the web without being limited to languages or domains where labeled data is abundant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis work a nonlinear model for Interdigitated Capacitors (IDCs) based on ferroelectric materials, is proposed. Through the properties of materials such as Hafnium-Zirconium Oxide (HfZrO2), it is possible to realize tunable radiofrequency (RF) circuits. In particular, the model proposed in this thesis describes the use of an IDC, realized on a High-Resistivity silicon substrate, as a phase shifter for beam-steering applications. The model is obtained starting from already present experimental measurements, through which it is possible to identify a circuit model. The model is tested for both low power values and other power values using Harmonic Balance simulations, which show an excellent convergence of the model up to 40 dBm of input power. Furthermore, an array composed by two patches operating both at 2.55 GHz, which exploits the tunable properties of the HfZrO-based IDC is proposed. At 0dBm the model shows a 47° phase shift with polarization -1 V and 1 V which leads to a 11° steering of the main lobe of the array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A period of accelerated expansion of the primordial universe, known as inflation, represents the standard paradigm for the early universe cosmology. While inflation agrees with observational constraints, a complete understanding of its physical origin is not available yet. This suggests the necessity of an embedding into a more fundamental theory. String theory is arguably the best-developed candidate for an ultra-violet (UV) complete theory of gravity and string compactifications could provide a natural framework for addressing this issue. The aim of this thesis work is to investigate the potential embedding of Starobinsky inflation in effective field theories arising in string compactifications. In particular, we focus on two main objectives. The first one is the evaluation of Yukawa-like couplings in f (R)-theories of gravity with fermions, more specifically in the context of Starobinsky inflation. The second goal is understanding if any of the moduli which naturally arise in string compactifications has the right form of this coupling and displays the correct scalar potential, as needed for a possible identification with the scalar field driving Starobinsky inflation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to estimate depth through supervised deep learning-based stereo methods, it is necessary to have access to precise ground truth depth data. While the gathering of precise labels is commonly tackled by deploying depth sensors, this is not always a viable solution. For instance, in many applications in the biomedical domain, the choice of sensors capable of sensing depth at small distances with high precision on difficult surfaces (that present non-Lambertian properties) is very limited. It is therefore necessary to find alternative techniques to gather ground truth data without having to rely on external sensors. In this thesis, two different approaches have been tested to produce supervision data for biomedical images. The first aims to obtain input stereo image pairs and disparities through simulation in a virtual environment, while the second relies on a non-learned disparity estimation algorithm in order to produce noisy disparities, which are then filtered by means of hand-crafted confidence measures to create noisy labels for a subset of pixels. Among the two, the second approach, which is referred in literature as proxy-labeling, has shown the best results and has even outperformed the non-learned disparity estimation algorithm used for supervision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective for this thesis work was the deployment of a Neural Network based approach for video object detection on board a nano-drone. Furthermore, we have studied some possible extensions to exploit the temporal nature of videos to improve the detection capabilities of our algorithm. For our project, we have utilized the Mobilenetv2/v3SSDLite due to their limited computational and memory requirements. We have trained our networks on the IMAGENET VID 2015 dataset and to deploy it onto the nano-drone we have used the NNtool and Autotiler tools by GreenWaves. To exploit the temporal nature of video data we have tried different approaches: the introduction of an LSTM based convolutional layer in our architecture, the introduction of a Kalman filter based tracker as a postprocessing step to augment the results of our base architecture. We have obtain a total improvement in our performances of about 2.5 mAP with the Kalman filter based method(BYTE). Our detector run on a microcontroller class processor on board the nano-drone at 1.63 fps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesi ha lo scopo di ricercare, esaminare ed implementare un sistema di Machine Learning, un Recommendation Systems per precisione, che permetta la racommandazione di documenti di natura giuridica, i quali sono già stati analizzati e categorizzati appropriatamente, in maniera ottimale, il cui scopo sarebbe quello di accompagnare un sistema già implementato di Information Retrieval, istanziato sopra una web application, che permette di ricercare i documenti giuridici appena menzionati.