2 resultados para suggestion

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanofibrous membranes are a promising material for tailoring the properties of laminated CFRP composites by embedding them into the structure. This project aimed to understand the effect of number, position and thickness of nanofibrous modifications specifically on the damping behaviour of the resulting nano-modified CFRP composite with an epoxy matrix. An improvement of damping capacity is expected to improve a composites lifetime and fatigue resistance by prohibiting the formation of microcracks and consequently hindering delamination, it also promises a rise in comfort for a range of final products by intermission of vibration propagation and therefore diminution of noise. Electrospinning was the technique employed to produce nanofibrous membranes from a blend of polymeric solutions. SEM, WAXS and DSC were utilised to evaluate the quality of the obtained membranes before they were introduced, following a specific stacking sequence, in the production process of the laminate. A suitable curing cycle in an autoclave was applied to mend the modifications together with the matrix material, ensuring full crosslinking of the matrix and therefore finalising the production process. DMA was exercised in order to gain an understanding about the effects of the different modifications on the properties of the composite. During this investigation it became apparent that a high number of modifications of laminate CFRP composites, with an epoxy matrix, with thick rubbery nanofibrous membranes has a positive effect on the damping capacity and the temperature range the effect applies in. A suggestion for subsequent studies as well as a recommendation for the production of nano-modified CFRP structures is included at the end of this document.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we study the heat kernel, a useful tool to analyze various properties of different quantum field theories. In particular, we focus on the study of the one-loop effective action and the application of worldline path integrals to derive perturbatively the heat kernel coefficients for the Proca theory of massive vector fields. It turns out that the worldline path integral method encounters some difficulties if the differential operator of the heat kernel is of non-minimal kind. More precisely, a direct recasting of the differential operator in terms of worldline path integrals, produces in the classical action a non-perturbative vertex and the path integral cannot be solved. In this work we wish to find ways to circumvent this issue and to give a suggestion to solve similar problems in other contexts.