3 resultados para sub-surface horizontal flow

em AMS Tesi di Laurea - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical study using Large Eddy Simulation Coherent Structure Model (LES-CSM), of the flow around a simplified Ahmed body, has been done in this work of thesis. The models used are two salient geometries from the experimental investigation performed in [1], and consist, in particular, in two notch-back body geometries. Six simulation are carried out in total, changing Reynolds number and back-light angle of the model’s rear part. The Reynolds numbers used, based on the height of the models and the free stream velocity, are Re = 10000, Re = 30000 and Re = 50000. The back-light angles of the slanted surface with respect to the horizontal roof surface, that characterizes the vehicle, are taken as B = 31.8◦ and B = 42◦ respectively. The experimental results in [1] have shown that, depending on the parameter B, asymmetric and symmetric averaged flow over the back-light and in the wake for a symmetric geometry can be observed. The aims of the present work of master thesis are principally two. The first aim is to investigate and confirm the influence of the parameter B on the presence of the asymmetry of the averaged flow, and confirm the features described in the experimental results. The second important aspect is to investigate and observe the influence of the second variable, the Reynolds number, in the developing of the asymmetric flow itself. The results have shown the presence of the mentioned asymmetry as well as an influence of the Reynolds number on it.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our goal in this thesis is to provide a result of existence of the degenerate non-linear, non-divergence PDE which describes the mean curvature flow in the Lie group SE(2) equipped with a sub-Riemannian metric. The research is motivated by problems of visual completion and models of the visual cortex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sub-grid scale (SGS) models are required in order to model the influence of the unresolved small scales on the resolved scales in large-eddy simulations (LES), the flow at the smallest scales of turbulence. In the following work two SGS models are presented and deeply analyzed in terms of accuracy through several LESs with different spatial resolutions, i.e. grid spacings. The first part of this thesis focuses on the basic theory of turbulence, the governing equations of fluid dynamics and their adaptation to LES. Furthermore, two important SGS models are presented: one is the Dynamic eddy-viscosity model (DEVM), developed by \cite{germano1991dynamic}, while the other is the Explicit Algebraic SGS model (EASSM), by \cite{marstorp2009explicit}. In addition, some details about the implementation of the EASSM in a Pseudo-Spectral Navier-Stokes code \cite{chevalier2007simson} are presented. The performance of the two aforementioned models will be investigated in the following chapters, by means of LES of a channel flow, with friction Reynolds numbers $Re_\tau=590$ up to $Re_\tau=5200$, with relatively coarse resolutions. Data from each simulation will be compared to baseline DNS data. Results have shown that, in contrast to the DEVM, the EASSM has promising potentials for flow predictions at high friction Reynolds numbers: the higher the friction Reynolds number is the better the EASSM will behave and the worse the performances of the DEVM will be. The better performance of the EASSM is contributed to the ability to capture flow anisotropy at the small scales through a correct formulation for the SGS stresses. Moreover, a considerable reduction in the required computational resources can be achieved using the EASSM compared to DEVM. Therefore, the EASSM combines accuracy and computational efficiency, implying that it has a clear potential for industrial CFD usage.